Optimization of Shot Peening Effective Parameters on Surface Hardness Improvement

Abstract

Shot peening is well-known process for mechanical properties integrity in metallic materials. In present study influences of different shot peening treatments on the surface hardness of different carbon steels were investigated experimentally and then alternative approach by using artificial neural network is presented for hardness prediction of the shot peened surface. After modeling a comprehensive parametric investigations and sensitivity analysis were applied according to the influence of the related effective parameters on surface hardness improvements.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. 1.

    A. Amanov, R. Karimbaev, E. Maleki, O. Unal, Y.-S. Pyun, T. Amanov, Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304. Surf. Coat. Technol. 358, 695–705 (2019)

    CAS  Article  Google Scholar 

  2. 2.

    O. Unal, E. Maleki, Shot peening optimization with complex decision-making tool: multi criteria decision-making. Measurement 125, 133–141 (2018)

    Article  Google Scholar 

  3. 3.

    O. Unal, E. Maleki, R. Varol, Effect of severe shot peening and ultra-low temperature plasma nitriding on Ti-6Al-4V alloy. Vacuum 150, 69–78 (2018)

    CAS  Article  Google Scholar 

  4. 4.

    O. Unal, E. Maleki, R. Varol, Plasma nitriding of gradient structured AISI 304 at low temperature: shot peening as a catalyst treatment. Vacuum 164, 194–197 (2019)

    CAS  Article  Google Scholar 

  5. 5.

    A. Tevlek, H.M. Aydın, E. Maleki, R. Varol, O. Unal, Effects of severe plastic deformation on pre-osteoblast cell behavior and proliferation on AISI 304 and Ti-6Al-4V metallic substrates. Surf. Coat. Technol. 366, 204–213 (2019)

    CAS  Article  Google Scholar 

  6. 6.

    Z. Jia, J. Ji, Influence analysis of shot peening on hot forging die. Int. J. Adv. Manuf. Technol. 90, 1779–1787 (2017)

    Article  Google Scholar 

  7. 7.

    E. Maleki, O. Unal, Roles of surface coverage increase and re-peening on properties of AISI 1045 carbon steel in conventional and severe shot peening processes. Surf. Interfaces 11, 82–90 (2018)

    CAS  Article  Google Scholar 

  8. 8.

    E. Maleki, O. Unal, K. Reza Kashyzadeh, Efficiency analysis of shot peening parameters on variations of hardness, grain size and residual stress via Taguchi approach. Met. Mater. Int. 25, 1436–1447 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    S.M.H. Gangaraj, M. Guagliano, G.H. Farrahi, An approach to relate shot peening finite element simulation to the actual coverage. Surf. Coat. Technol. 243, 39–45 (2014)

    CAS  Article  Google Scholar 

  10. 10.

    S. Bagherifard, M. Guagliano, Fatigue behavior of a low-alloy steel with nanostructured surface obtained by severe shot peening. Eng. Frac. Mech. 81, 56–68 (2012)

    Article  Google Scholar 

  11. 11.

    K. Miková, S. Bagherifard, O. Bokuvka, M. Guagliano, L. Trško, Fatigue behavior of X70 microalloyed steel after severe shot peening. Int. J. Fatigue 55, 33–42 (2013)

    Article  CAS  Google Scholar 

  12. 12.

    S.M. Hassani-Gangaraj, K.S. Cho, H.L. Voigt, M. Guagliano, C.A. Schuh, Experimental assessment and simulation of surface nanocrystallization by severe shot peening. Acta Mater. 97, 105–115 (2015)

    CAS  Article  Google Scholar 

  13. 13.

    E. Maleki, G.H. Farrahi, Modelling of conventional and severe shot peening influence on properties of high carbon steel via artificial neural network. IJE Trans. B 31, 382–393 (2018)

    CAS  Google Scholar 

  14. 14.

    C.C. Koch, Nanostructured materials: an overview, in Bulk Nanostructured Materials, ed. by M.J. Zehetbauer, Y.T. Zhu (Wiley, Weinheim, 2009), pp. 1–20

    Google Scholar 

  15. 15.

    E. Maleki, Artificial neural networks application for modeling of friction stir welding effects on mechanical properties of 7075–T6 aluminum alloy. IOP Conf. Ser. Mater. Sci. Eng. 103, 012034 (2015)

    Article  Google Scholar 

  16. 16.

    E.O. Hall, The deformation and ageing of mild steel: III discussion of results. Proc. Phys. Soc. B 64, 747–752 (1951)

    Article  Google Scholar 

  17. 17.

    J.E. Bird, A.K. Mukherjee and J.E. Dorn, Correlations between high-temperature creep behavior and structure, in: D.G. Brandon and A. Rosen (Eds.), Proceedings of a Symposium on Quantitative Relation Between Properties and Microstructure, Israel University Press, Jerusalem, 1969, pp. 255–341.

  18. 18.

    T.G. Langdon, The mechanical properties of superplastic materials. Metal. Trans. A 13A, 689–701 (1982)

    Article  Google Scholar 

  19. 19.

    S.M.H. Gangaraj, G.H. Farrahi, Side effects of shot peening on fatigue crack initiation life. IJE Trans. A 24, 275–280 (2011)

    Google Scholar 

  20. 20.

    E. Maleki, O. Unal, K.R. Kashyzadeh, Effects of conventional, severe, over, and re-shot peening processes on the fatigue behavior of mild carbon steel. Surf. Coat. Technol. 344, 62–74 (2018)

    CAS  Article  Google Scholar 

  21. 21.

    E. Maleki, O. Unal, K.R. Kashyzadeh, Surface layer nanocrystallization of carbon steels subjected to severe shot peening: Analysis and optimization. Mater. Charact. 157, 109877 (2019)

    CAS  Article  Google Scholar 

  22. 22.

    T. Kim, H. Lee, H.C. Hyun, S. Jung, A simple but effective FE model with plastic shot for evaluation of peening residual stress and its experimental validation. Mater. Sci. Eng. A 528, 5945–5954 (2011)

    CAS  Article  Google Scholar 

  23. 23.

    S.A. Meguid, G. Shagal, J.C. Stranart, J. Daly, Three-dimensional dynamic finite element analysis of shot-peening induced residual stresses. Finite Elem. Anal. Des. 31, 179–191 (1999)

    Article  Google Scholar 

  24. 24.

    C. Nouguier-Lehon, M. Zarwel, C. Diviani, D. Hertz, H. Zahouani, T. Hoc, Surface impact analysis in shot peening process. Wear 302, 1058–1063 (2013)

    CAS  Article  Google Scholar 

  25. 25.

    M. Guagliano, Relating Almen intensity to residual stresses induced by shot peening: a numerical approach. J. Mater. Process. Technol. 110, 277–286 (2001)

    Article  Google Scholar 

  26. 26.

    O. Unal, Optimization of shot peening parameters by response surface methodology. Surf. Coat. Technol. 305, 99–109 (2016)

    CAS  Article  Google Scholar 

  27. 27.

    M. Mehrpouya, A. Gisario, A. Rahimzadeh, M. Barletta, An artificial neural network model for laser transmission welding of biodegradable polyethylene terephthalate/polyethylene vinyl acetate (PET/PEVA) blends. Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-018-03259-9

    Article  Google Scholar 

  28. 28.

    T.Y. Wu, K.W. Lei, Prediction of surface roughness in milling process using vibration signal analysis and artificial neural network. Int. J. Adv. Manuf. Technol. (2019). https://doi.org/10.1007/s00170-018-3176-2

    Article  Google Scholar 

  29. 29.

    R. Kondo, Sh Yamakawa, Y. Masuoka, S. Tajima, R. Asahi, Microstructure recognition using convolutional neural networks for prediction of ionic conductivity in ceramics. Acta Mater. 141, 29–38 (2017)

    CAS  Article  Google Scholar 

  30. 30.

    N. Maleki, S. Kashanian, E. Maleki, M. Nazari, A novel enzyme based biosensor for catechol detection in water samples using artificial neural network. Biochem. Eng. J. 128, 1–11 (2017)

    CAS  Article  Google Scholar 

  31. 31.

    E. Maleki, N. Maleki, artificial neural network modeling of pt/c cathode degradation in PEM fuel cell. J. Electron. Mater. 45, 3822–3834 (2016)

    CAS  Article  Google Scholar 

  32. 32.

    C. Karataş, A. Sozen, E. Dulek, Modelling of residual stresses in the shot peened material C-1020 by artificial neural network. Expert Syst. Appl. 36, 3514–4352 (2009)

    Article  Google Scholar 

  33. 33.

    S. Delijaicov, A.T. Fleury, F.P.R. Martins, Application of multiple regression and neural networks to synthesize a model for peen forming process planning. J. Achiev. Mater. Manuf. Eng. 43, 651–656 (2010)

    Google Scholar 

  34. 34.

    E. Maleki, G.H. Farrahi, K. Sherafatnia, Application of artificial neural network to predict the effects of severe shot peening on properties of low carbon steel, in Machining, Joining and Modifications of Advanced Materials, ed. by A. Öchsner, H. Altenbach (Springer, Singapore, 2016), pp. 45–60

    Google Scholar 

  35. 35.

    E. Maleki, Modeling of severe shot peening effects to obtain nanocrystalline surface on cast iron using artificial neural network. Mater. Today Proc. 3, 2197–2206 (2016)

    Article  Google Scholar 

  36. 36.

    E. Maleki, O. Unal, Fatigue limit prediction and analysis of nano-structured AISI 304 steel by severe shot peening via ANN. Eng. Comput. (2020). https://doi.org/10.1007/s00366-020-00964-6

    Article  Google Scholar 

  37. 37.

    E. Maleki, O. Unal, Shot peening process effects on metallurgical and mechanical properties of 316 L steel via: experimental and neural network modeling. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00448-3

    Article  Google Scholar 

  38. 38.

    M. Acosta, S. Kanarachos, Tire lateral force estimation and grip potential identification using neural networks, extended kalman filter, and recursive least squares. Neural Comput. Appl. 30, 3445–3465 (2018)

    Article  Google Scholar 

  39. 39.

    F.F. Ting, Y.J. Tan, K.S. Sim, Convolutional neural network improvement for breast cancer classification. Expert Syst. Appl. 120, 103–115 (2019)

    Article  Google Scholar 

  40. 40.

    J. Sun, J. Chen, C. Ko, Neural networks for solving second-order cone constrained variational inequality problem. Comput. Optim. Appl. 51, 623–648 (2012)

    Article  Google Scholar 

  41. 41.

    N.V. Nguyen, M. Tyan, J. Lee, A modified variable complexity modeling for efficient multidisciplinary aircraft conceptual design. Optim. Eng. 16, 483–505 (2015)

    Article  Google Scholar 

  42. 42.

    M. Jahanshahi, E. Maleki, A. Ghiami, On the efficiency of artificial neural networks for plastic analysis of planar frames in comparison with genetic algorithms and ant colony systems. Neural Comput. Appl. 28, 3209–3227 (2017)

    Article  Google Scholar 

  43. 43.

    A. Azadeh, S.F. Ghaderi, M. Sheikhalishahi, B. Pourvalikhan Nokhandan, Optimization of short load forecasting in electricity market of iran using artificial neural networks. Optim. Eng. 15, 485–508 (2014)

    Article  Google Scholar 

  44. 44.

    R. Teimouri, H. Baseri, B. Rahmani, M. Bakhshi-Jooybari, Modeling and optimization of spring-back in bending process using multiple regression analysis and neural computation. Int. J. Mater. Form 7, 167–178 (2014)

    Article  Google Scholar 

  45. 45.

    H. Park, T. Anh, Development of two-phase neural network-genetic algorithm hybrid model in modeling damage evolution in roll forming of aluminum sheet. Int. J. Mater. Form 6, 423–436 (2013)

    Article  Google Scholar 

  46. 46.

    G.D. Garson, Interpreting neural-network connection weights. AI Expert 6, 47–51 (1991)

    Google Scholar 

  47. 47.

    M. Abendroth, M. Kuna, Determination of deformation and failure properties of ductile materials by means of the small punch test and neural networks. Comput. Mater. Sci. 28, 633–644 (2003)

    CAS  Article  Google Scholar 

  48. 48.

    N. Castin, J.R. Fernández, R.C. Pasianot, Predicting vacancy migration energies in lattice-free environments using artificial neural networks. Comput. Mater. Sci. 84, 217–225 (2014)

    CAS  Article  Google Scholar 

  49. 49.

    K. Elangovan, C.S. Narayanan, R. Narayanasamy, Modelling of forming limit diagram of perforated commercial pure aluminium sheets using artificial neural network. Comput. Mater. Sci. 47(201nma0), 1072–1078 (2010)

    CAS  Article  Google Scholar 

  50. 50.

    E. Maleki, K.R. Kashyzadeh, Effects of the hardened nickel coating on the fatigue behavior of CK45 steel: experimental, finite element method, and artificial neural network modeling. Iran. J. Mater. Sci. Eng. 14, 81–99 (2017)

    Google Scholar 

  51. 51.

    E. Maleki, O. Unal, K.R. Kashyzadeh, Fatigue behavior prediction and analysis of shot peened mild carbon steels. Int. J. Fatigue 116, 48–67 (2018)

    CAS  Article  Google Scholar 

  52. 52.

    H. Saitoh, T. Ochi, M. Kubota, Formation of surface nanocrystalline structure in steels by air blast shot peening, In: Proceedings of the 10th International Conference on Shot Peening, Japan, 2008, pp. 488–93.

  53. 53.

    O. Unal, R. Varol, Surface severe plastic deformation of AISI 304 via conventional shot peening, severe shot peening and repeening. Appl. Surf. Sci. 351, 289–295 (2015)

    CAS  Article  Google Scholar 

  54. 54.

    E. Maleki, O. Unal, Novel experimental methods for the determination of the boundaries between conventional, severe and over shot peening processes. Surf. Interfaces 13, 233–254 (2018)

    Article  Google Scholar 

  55. 55.

    S. Bagherifard, R. Ghelichi, M. Guagliano, A numerical model of severe shot peening (SSP) to predict the generation of a nanostructured surface layer of material. Surf. Coat. Technol. 204, 4081–4090 (2010)

    CAS  Article  Google Scholar 

  56. 56.

    S. Bagherifard, I. Fernandez-Pariente, R. Ghelichi, M. Guagliano, Effect of severe shot peening on microstructure and fatigue strength of cast iron. Int. J. Fatigue 65, 64–70 (2014)

    CAS  Article  Google Scholar 

  57. 57.

    S. Bagherifard, R. Ghelichi, M. Guagliano, On the shot peening surface coverage and its assessment by means of finite element simulation: a critical review and some original developments. Appl. Surf. Sci. 259, 186–194 (2012)

    CAS  Article  Google Scholar 

  58. 58.

    Y. Kobayashi, S. Ujihashi, K. Okumura, R. Ishikura, T. Kano, M. Kato, Effect of Shot Peening on Temper Hardness, shotpeener.com, article 2008065

  59. 59.

    Y. Harada, M. Fukunaga, K. Fukaura, S. Ujihashi, Y. Kobayashi, Butt joining of dissimilar sheets by shot peening. Mater. Sci. Forum 561–565, 843–846 (2007)

    Article  Google Scholar 

  60. 60.

    Y. Harada, D. Gowa, T. Tsuji, Y. Kobayashi, Effect of microshot peening on residual stress of high-toughness spring steel. Adv. Mater. Res. 325, 745–750 (2011)

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erfan Maleki.

Ethics declarations

Conflict of interest

The authors stated that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

See Table

Table 4 Parameters of SP process and considered steels

4.

Appendix B

See Table

Table 5 Used statistical criteria and their description

5.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maleki, E., Unal, O. Optimization of Shot Peening Effective Parameters on Surface Hardness Improvement. Met. Mater. Int. (2020). https://doi.org/10.1007/s12540-020-00758-x

Download citation

Keywords

  • Shot peening
  • Surface treatments
  • Hardness
  • Modeling
  • Artificial neural network