Laser Cladding Novel NiCrSiFeBW–CeO2 Coating with Both High Wear and Corrosion Resistance


In order to obtain the high wear- and corrosion-resistant nickel based alloy coatings for laser remanufacturing fretting damaged metal parts which are serviced under high-temperature corrosion and wear conditions, a novel NiCrSiFeBW–CeO2 alloy powder was designed by increasing the content of B and Si, adding tungsten and CeO2 using JMatpro software on the basis of Ni60 alloy powder composition, and the NiCrSiFeBW–CeO2 coating was successfully cladded on 45# steel under different laser energy area densities. The microstructure, wear and corrosion behaviors of the NiCrSiFeBW–CeO2 coatings were systematically studied. The results show that novel NiCrSiFeBW–CeO2 coating produced by laser cladding not only has no cracks but also has both high wear resistance and corrosion resistance due to some ultra-fine compound particle phases in situ generated in its structure. Among these phases, the B3Cr5, CrB4, (Cr, Ni)3C2, Cr7C3, W3Cr12Si5 and (Fe, Ni)5Si3 played a significant role in reinforcing the wear resistance of the coating, while the B3Cr5, W3Cr12Si5 and CrB4 enhanced the corrosion resistance of the coating. The novel NiCrSiFeBW–CeO2 coating prepared under 100 J/mm2 EAD has the best comprehensive performance, the wear loss is 7.53 × 10−5 mm3/N, the Ecorr is − 0.1738 V. Compared with Ni60 alloy coating, the novel Ni-based coating not only has a better laser cladded formability but also similar wear resistance and better corrosion-resistance. It provides a reference for repairing fretting damaged metal parts by laser cladding the nickel based coating with high wear and corrosion resistance.

Graphic Abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15


  1. 1.

    A. Chergui, K. Hadj-Hamou, F. Vignat, Comput. Ind. Eng. 126, 292–301 (2018)

    Article  Google Scholar 

  2. 2.

    B.S. Richardson, R.F. Lind, P.D. Lloyd, M.W. Noakes, L.J. Love, B.K. Post, Addit. Manuf. 24, 467–478 (2018)

    CAS  Google Scholar 

  3. 3.

    J. Liu, H. Yu, C. Chen, F. Weng, J. Dai, Opt. Lasers Eng. 93, 195–210 (2017)

    Article  Google Scholar 

  4. 4.

    N. Li, S. Huang, G.D. Zhang, R.Y. Qin, W. Liu, H.P. Xiong, G.Q. Shi, J. Blackburn, J. Mater. Sci. Technol. 35, 242–269 (2019)

    Article  Google Scholar 

  5. 5.

    A. Haleem, M. Javaid, A. Saxena, Egypt. Hear. J. 70, 433–441 (2018)

    Article  Google Scholar 

  6. 6.

    Z. Weng, A. Wang, X. Wu, Y. Wang, Z. Yang, Surf. Coat. Technol. 304, 283–292 (2016)

    CAS  Article  Google Scholar 

  7. 7.

    S. Zhou, X. Dai, Appl. Surf. Sci. 256, 4708–4714 (2010)

    CAS  Article  Google Scholar 

  8. 8.

    S. Sun, H. Fu, X. Ping, X. Guo, J. Lin, Y. Lei, W. Wu, J. Zhou, Appl. Surf. Sci. 476, 914–927 (2019)

    CAS  Article  Google Scholar 

  9. 9.

    X.B. Liu, C. Zheng, Y.F. Liu, J.W. Fan, M.S. Yang, X.M. He, M. Di Wang, H.B. Yang, L.H. Qi, J. Mater. Process. Technol. 213, 51–58 (2013)

    CAS  Article  Google Scholar 

  10. 10.

    X. Luo, J. Li, G.J. Li, J. Alloys Compd. 626, 102–111 (2015)

    CAS  Article  Google Scholar 

  11. 11.

    X. Chen, X. Qin, Z. Zhu, K. Gao, J. Mater. Process. Technol. 262, 257–268 (2018)

    CAS  Article  Google Scholar 

  12. 12.

    C. Wang, Y. Gao, G. Zhang, Rare Met. Eng. 46, 2306–2312 (2017)

    Google Scholar 

  13. 13.

    X. He, R.G. Song, D.J. Kong, J. Alloys Compd. 770, 771–783 (2019)

    CAS  Article  Google Scholar 

  14. 14.

    H. Zhang, D. Gu, L. Xi, H. Zhang, M. Xia, C. Ma, J. Mater. Sci. Technol. 35, 1128–1136 (2019)

    Article  Google Scholar 

  15. 15.

    Y. Lei, R. Sun, Y. Tang, W. Niu, Opt. Lasers Eng. 66, 181–186 (2015)

    Article  Google Scholar 

  16. 16.

    G. Yin, S. Chen, Y. Liu, J. Mater. Eng. Perf. 27, 1154–1167 (2018)

    CAS  Article  Google Scholar 

  17. 17.

    F. Liu, C. Liu, S. Chen, X. Tao, M. Wang, Surf. Coat. Technol. 201, 6332–6339 (2007)

    CAS  Article  Google Scholar 

  18. 18.

    Y. Zhou, S. Chen, X. Chen, T. Cui, J. Liang, C. Liu, Mater. Sci. Eng. A 742, 150–161 (2019)

    CAS  Article  Google Scholar 

  19. 19.

    L. Bian, S.M. Thompson, N. Shamsaei, JOM 67, 629–638 (2015)

    CAS  Article  Google Scholar 

  20. 20.

    L. Yanan, S. Ronglu, N. Wei, Z. Tiangang, L. Yiwen, Opt. Lasers Eng. 120, 84–94 (2019)

    Article  Google Scholar 

  21. 21.

    B.C. Yan, J. Zhang, L.H. Lou, Mater. Sci. Eng. A 474, 39–47 (2008)

    Article  Google Scholar 

  22. 22.

    Z. Jiang, P. Wang, D. Li, Y. Li, J. Mater. Sci. Technol. (2019).

    Article  Google Scholar 

  23. 23.

    W.P. Tian, H.W. Yang, S. De Zhang, Acta Metall. Sin. Engl. Lett. 31, 308–320 (2018)

    CAS  Article  Google Scholar 

  24. 24.

    T. Hu, Z. Shi, W. Shao, X. Xing, Y. Zhou, Q. Yang, Surf. Coat. Technol. 377, 124850 (2019)

    CAS  Article  Google Scholar 

  25. 25.

    Z.Y. Liu, Z. Wang, J. Mater. Sci. Technol. 34, 2116–2124 (2018)

    Article  Google Scholar 

  26. 26.

    A. Viswanathan, D. Sastikumar, H. Kumar, A.K. Nath, Surf. Coat. Technol. 203, 1618–1623 (2009)

    CAS  Article  Google Scholar 

  27. 27.

    M.H. Farshidianfar, A. Khajepour, A.P. Gerlich, J. Mater. Sci. Technol. 231, 468–478 (2016)

    CAS  Article  Google Scholar 

  28. 28.

    J. Shao, G. Yu, X. He, S. Li, R. Chen, Y. Zhao, Opt. Laser Technol. 119, 105662 (2019)

    CAS  Article  Google Scholar 

  29. 29.

    T. Minoda, H. Yoshida, Metall. Mater. Trans. A 33, 2891–2898 (2002)

    Article  Google Scholar 

  30. 30.

    H.Y. Gou, Z.P. Li, H. Niu, F.M. Gao, J.W. Zhang, R.C. Ewing, J. Lian, Phys. Appl. 111907, 2–6 (2013)

    Google Scholar 

  31. 31.

    H. Xu, W. Liu, F. Lu, P. Wang, Y. Ding, Mater. Charact. 130, 270–277 (2017)

    CAS  Article  Google Scholar 

  32. 32.

    F. Yuan, S. Forbes, K.K. Ramachandran, Y. Mozharivskyj, J. Alloys Compd. 650, 712–717 (2015)

    CAS  Article  Google Scholar 

  33. 33.

    H. Li, J. Jie, S. Liu, Y. Zhang, T. Li, Mater. Sci. Eng. A 704, 45–56 (2017)

    CAS  Article  Google Scholar 

  34. 34.

    K.S. Bal, J. Dutta Majumdar, A. Roy Choudhury, Corros. Sci. 157, 406–419 (2019)

    CAS  Article  Google Scholar 

  35. 35.

    Y. Sui, F. Yang, G. Qin, Z. Ao, Y. Liu, Y. Wang, J. Mater. Process. Technol. 252, 217–224 (2018)

    CAS  Article  Google Scholar 

  36. 36.

    D. Deschuyteneer, F. Petit, M. Gonon, F. Cambier, Surf. Coat. Technol. 283, 162–171 (2015)

    CAS  Article  Google Scholar 

  37. 37.

    C. Guo, J. Zhou, J. Chen, J. Zhao, Y. Yu, H. Zhou, Wear 270, 492–498 (2011)

    CAS  Article  Google Scholar 

  38. 38.

    J. Xu, C. Zhou, S. Jiang, Intermetallics 18, 1669–1675 (2010)

    CAS  Article  Google Scholar 

Download references


This work was financially supported by Green Manufacturing System Integration Project of the Industry and Information Ministry of China (2017), National Key R&D Program of China (2016YFB1100201), Research and development plan for the future emerging industries in Shenyang (18-004-2-26), and Shenyang Achievement Transformation Project (2019).

Author information



Corresponding author

Correspondence to Suiyuan Chen.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Guo, M., Chen, S., Shang, F. et al. Laser Cladding Novel NiCrSiFeBW–CeO2 Coating with Both High Wear and Corrosion Resistance. Met. Mater. Int. (2020).

Download citation


  • Laser remanufacturing
  • Fretting damaged metal part
  • Ni-based coating
  • In-situ generated phase
  • Wear resistance
  • Corrosion resistance