Optimization of Equal Channel Angular Pressing Parameters for Improving the Hardness and Microstructure Properties of Al–Zn–Mg Alloy by Using Taguchi Method

This article has been updated

Abstract

In this study, optimization of equal channel angular pressing (ECAP) parameters was aimed to improve the mechanical and microstructure properties of Al–Zn–Mg alloy using the Taguchi method with ANOVA analysis. Three different parameters (process temperature, processing route, and the number of passes) with three different levels were examined so L9 (33) orthogonal array was employed. The effects of these parameters on the microstructure properties of Al–Zn–Mg alloy were studied using X-ray diffractometer, optical microscopy, scanning electron microscopy, electron backscatter diffraction and transmission electron microscopy and mechanical properties were measured by Vickers micro-hardness experimental tests. Among the samples obtained, the sample that meets the desired hardness and grain size value was characterized. The results indicate that eight pass ECAP in route Bc at 100 °C is found as a more appropriate condition that meets the highest micro-hardness value and the lowest grain size value. Microstructural investigations showed that grain size was highly affected by the temperature, and is less affected by the number of passes and ECAP routes. The results showed that the increasing ECAP temperature leads to a decrease in the fraction of HABs, an increase in the grain size and an increase in the equiaxed of the grains.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Change history

  • 12 February 2021

    The Missed Graphic Abstract has been updated.

References

  1. 1.

    T.G. Langdon et al., Using equal channel angular pressing for refining grain size. Jom J. Miner. Metals Mater. Soc. 52(4), 30–33 (2000). https://doi.org/10.1007/s11837-000-0128-7

    CAS  Article  Google Scholar 

  2. 2.

    Z. Horita et al., Improvement of mechanical properties for Al alloys using equal-channel angular pressing. J. Mater. Process. Technol. 117(3), 288–292 (2001). https://doi.org/10.1016/S0924-0136(01)00783-X

    CAS  Article  Google Scholar 

  3. 3.

    Z. Horita, T. Fujinami, T.G. Langdon, The potential for scaling ECAP: effect of sample size on grain refinement and mechanical properties. Mater. Sci. Eng. Struct. Mater Prop. Microstruct. Process. 318(1–2), 34–41 (2001). https://doi.org/10.1016/S0921-5093(01)01339-9

    Article  Google Scholar 

  4. 4.

    R.Z. Valiev, T.G. Langdon, Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog. Mater Sci. 51(7), 881–981 (2006). https://doi.org/10.1016/j.pmatsci.2006.02.003

    CAS  Article  Google Scholar 

  5. 5.

    Y. Iwahashi et al., Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scripta Mater. 35(2), 143–146 (1996). https://doi.org/10.1016/1359-6462(96)00107-8

    CAS  Article  Google Scholar 

  6. 6.

    A.P. Zhilyaev, T.G. Langdon, Using high pressure torsion for metal processing: fundamentals and applications. Prog. Mater Sci. 53, 893–979 (2008). https://doi.org/10.1016/j.pmatsci.2008.03.002

    CAS  Article  Google Scholar 

  7. 7.

    S.L. Semiatin, A.A. Salem, M.J. Saran, Models for severe plastic deformation by equal-channel angular extrusion. JOM 56(10), 69–77 (2004). https://doi.org/10.1007/s11837-004-0296-y

    Article  Google Scholar 

  8. 8.

    P.N. Fagin et al., Failure modes during equal channel angular extrusion of aluminum alloy 2024. Metall. Mater. Trans. Phys. Metall. Mater. Sci. 32(7), 1869–1871 (2001). https://doi.org/10.1007/s11661-001-0165-z

    Article  Google Scholar 

  9. 9.

    V.M. Segal, Equal channel angular extrusion: from macromechanics to structure formation. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 271(1–2), 322–333 (1999). https://doi.org/10.1016/S0921-5093(99)00248-8

    Article  Google Scholar 

  10. 10.

    N. Saito et al., Application of equal channel angular extrusion on strengthening of ferritic stainless steel. J. Mater. Sci. 36(13), 3229–3232 (2001). https://doi.org/10.1023/A:1017990420563

    CAS  Article  Google Scholar 

  11. 11.

    M.H. Shaeri et al., Effect of ECAP temperature on microstructure and mechanical properties of Al–Zn–Mg-Cu alloy. Prog. Nat. Sci. Mater. Int. 26(2), 182–191 (2016). https://doi.org/10.1016/j.pnsc.2016.03.003

    CAS  Article  Google Scholar 

  12. 12.

    M.A. Afifi et al., Effect of ECAP processing on microstructure evolution and dynamic compressive behavior at different temperatures in an Al–Zn–Mg alloy. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 684, 617–625 (2017). https://doi.org/10.1016/j.msea.2016.12.099

    CAS  Article  Google Scholar 

  13. 13.

    M.R. Rezaei, S.G. Shabestari, S.H. Razavi, Effect of ECAP consolidation temperature on the microstructure and mechanical properties of Al-Cu-Ti metallic glass reinforced aluminum matrix composite. J. Mater. Sci. Technol. 33(9), 1031–1038 (2017). https://doi.org/10.1016/j.jmst.2016.10.013

    CAS  Article  Google Scholar 

  14. 14.

    R.G. Ding et al., Effect of ECAP on microstructure and mechanical properties of ZE41 magnesium alloy. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 527(16–17), 3777–3784 (2010). https://doi.org/10.1016/j.msea.2010.02.030

    CAS  Article  Google Scholar 

  15. 15.

    K.R. Cardoso et al., Effect of equal channel angular pressing (ECAP) on microstructure and properties of Al-FeAlCr intermetallic phase composites. Mater. Res. Ibero Am. J. Mater. 17(3), 775–780 (2014). https://doi.org/10.1590/S1516-14392014005000029

    CAS  Article  Google Scholar 

  16. 16.

    M.H. Shaeri et al., Microstructure and mechanical properties of Al-7075 alloy processed by equal channel angular pressing combined with aging treatment. Mater. Des. 57, 250–257 (2014). https://doi.org/10.1016/j.matdes.2014.01.008

    CAS  Article  Google Scholar 

  17. 17.

    G. Gonzalez et al., Microstructure and texture of Al-2Si-xSn (x = 0, 4, 8 mass%) alloys processed by equal channel angular pressing. Mater. Trans. 53(7), 1234–1239 (2012). https://doi.org/10.2320/matertrans.M2012011

    CAS  Article  Google Scholar 

  18. 18.

    I. Khoubrou, B. Nami, S.M. Miresmaeili, Investigation on the creep behavior of AZ91 magnesium alloy processed by severe plastic deformation. Met. Mater. Int. 26(2), 196–204 (2020). https://doi.org/10.1007/s12540-019-00318-y

    CAS  Article  Google Scholar 

  19. 19.

    W. Abdel-Aziem et al., Microstructure evolution of AA1070 aluminum alloy processed by micro/meso-scale equal channel angular pressing. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00544-4

    Article  Google Scholar 

  20. 20.

    T. Khelfa et al., Microstructure and mechanical properties of AA6082-T6 by ECAP under warm processing. Met. Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00388-y

    Article  Google Scholar 

  21. 21.

    R. Meshkabadi et al., Combined effects of ECAP and subsequent heating parameters on semi-solid microstructure of 7075 aluminum alloy. Trans. Nonferrous Metals Soci. China 26(12), 3091–3101 (2016). https://doi.org/10.1016/S1003-6326(16)64441-2

    CAS  Article  Google Scholar 

  22. 22.

    R. Meshkabadi et al., Microstructure and homogeneity of semi-solid 7075 aluminum tubes processed by parallel tubular channel angular pressing. Met. Mater. Int. 23(5), 1019–1028 (2017). https://doi.org/10.1007/s12540-017-6760-3

    CAS  Article  Google Scholar 

  23. 23.

    R. Meshkabadi et al., An enhanced steady-state constitutive model for semi-solid forming of Al7075 based on cross model. Metall. Mater. Trans. A 48(9), 4275–4285 (2017). https://doi.org/10.1007/s11661-017-4192-9

    CAS  Article  Google Scholar 

  24. 24.

    R. Howard, N. Bogh, D.S. McKenzie, Heat treating processes and equipment. Handb. Alumin. Metall. Processes 1, 911–920 (2003)

    Google Scholar 

  25. 25.

    G.Z. Quan et al., A characterization for the dynamic recrystallization kinetics of as-extruded 7075 aluminum alloy based on true stress–strain curves. Comput. Mater. Sci. 55, 65–72 (2012). https://doi.org/10.1016/j.commatsci.2011.11.031

    CAS  Article  Google Scholar 

  26. 26.

    S.R. Kumar et al., Microstructural and mechanical properties of Al 7075 alloy processed by equal channel angular pressing. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 533, 50–54 (2012). https://doi.org/10.1016/j.msea.2011.11.031

    CAS  Article  Google Scholar 

  27. 27.

    C. Xu, T.G. Langdon, The development of hardness homogeneity in aluminum and and aluminum alloy processed by ECAP. J. Materi. Sci. 42, 1542–1550 (2007). https://doi.org/10.1007/s10853-006-0899-5

    CAS  Article  Google Scholar 

  28. 28.

    P.B. Berbon et al., Influence of pressing speed on microstructural development in equal channel angular pressing. Metall. Mater. Trans. A 30(8), 1989–1997 (1999). https://doi.org/10.1007/s11661-999-0009-9

    Article  Google Scholar 

  29. 29.

    I. Balasundar, M.S. Rao, T. Raghu, Equal channel angular pressing die to extrude a variety of materials. Mater. Des. 30(4), 1050–1059 (2009). https://doi.org/10.1016/j.matdes.2008.06.057

    CAS  Article  Google Scholar 

  30. 30.

    P. Malek, M. Cieslar, R.K. Islamgaliev, The influence of ECAP temperature on the stability of Al–Zn–Mg-Cu alloy. J. Alloy. Compd. 378(1–2), 237–241 (2004). https://doi.org/10.1016/j.jallcom.2003.11.161

    CAS  Article  Google Scholar 

  31. 31.

    P.W.J. Mckenzie, R. Lapovok, Y. Estrin, The influence of back pressure on ECAP processed AA 6016: modeling and experiment. Acta Mater. 55(9), 2985–2993 (2007). https://doi.org/10.1016/j.actamat.2006.12.038

    CAS  Article  Google Scholar 

  32. 32.

    K.S. Ghosh, N. Gao, M.J. Starink, Characterization of high pressure torsion processed 7150 Al–Zn–Mg-Cu alloy. Mater. Sci. Eng. A 552, 164–171 (2012). https://doi.org/10.1016/j.msea.2012.05.026

    CAS  Article  Google Scholar 

  33. 33.

    K. Matsuki et al., Microstructural characteristics and superplastic-like behavior in aluminum powder alloy consolidated by equal-channel angular pressing. Acta Mater. 48(10), 2625–2632 (2000). https://doi.org/10.1016/S1359-6454(00)00061-6

    CAS  Article  Google Scholar 

  34. 34.

    L. Qin et al., In-situ observation of crack initiation and propagation in Ti/Al composite laminates during tensile test. J. Alloy. Compd. 712, 69–75 (2017). https://doi.org/10.1016/j.jallcom.2017.04.063

    CAS  Article  Google Scholar 

  35. 35.

    A. Gandhi, Problem solving using Taguchi DOE techniques. J. Ind. Eng. 32(4), 32–45 (2003)

    Google Scholar 

  36. 36.

    C.C. Tsao, H. Hocheng, Taguchi analysis of delamination associated with various drill bits in drilling of composite material. Int. J. Mach. Tools Manuf 44, 1085–1090 (2004). https://doi.org/10.1016/j.ijmachtools.2004.02.019

    Article  Google Scholar 

  37. 37.

    T. Sakai et al., Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater Sci. 60, 130–207 (2014). https://doi.org/10.1016/j.pmatsci.2013.09.002

    CAS  Article  Google Scholar 

  38. 38.

    Y.H. Zhao et al., Microstructures and mechanical properties of ultrafine grained 7075 Al alloy processed by ECAP and their evolutions during annealing. Acta Mater. 52(15), 4589–4599 (2004). https://doi.org/10.1016/j.actamat.2004.06.017

    CAS  Article  Google Scholar 

  39. 39.

    K.R. Cardoso et al., High Strength AA7050 Al alloy processed by ECAP: Microstructure and mechanical properties. Mater. Sci. Eng. Struct. Mater. Prop. Microstruct. Process. 528(18), 5804–5811 (2011). https://doi.org/10.1016/j.msea.2011.04.007

    CAS  Article  Google Scholar 

  40. 40.

    Van Horn, K.R., Aluminum, American Society for Metals, 2 (1968)

  41. 41.

    H. Baker, Handbook-alloy phase diagrams. ASM Int. 3, 279–337 (1990)

    Google Scholar 

  42. 42.

    J.C. Williams, E.A. Starke, Progress in structural materials for aerospace systems. Acta Mater. 51, 5775–5799 (2003). https://doi.org/10.1016/j.actamat.2003.08.023

    CAS  Article  Google Scholar 

  43. 43.

    M. Chegini, M.H. Shaeri, Effect of equal channel angular pressing on the mechanical and tribological behavior of Al–Zn–Mg–Cu alloy. Mater. Charact. 140, 147–161 (2018). https://doi.org/10.1016/j.matchar.2018.03.045

    CAS  Article  Google Scholar 

  44. 44.

    Z. Zhang et al., Research on grain refinement mechanism of 6061 Aluminum alloy processed by combined SPD methods of ECAP and MAC. Materials 11, 1246 (2018). https://doi.org/10.3390/ma11071246

    CAS  Article  Google Scholar 

  45. 45.

    Y.Y. Wang et al., Effect of deformation temperature on the microstructure developed in commercial purity aluminum processed by equal channel angular extrusion. Scr. Mater. 50(5), 613–617 (2004). https://doi.org/10.1016/j.scriptamat.2003.11.027

    CAS  Article  Google Scholar 

  46. 46.

    I. Mazurina et al., Effect of deformation temperature on microstructure evolution in aluminum alloy 2219 during hot ECAP. Mater. Sci. Eng. Struct. Mate. Prop. Microstruct. Process. 486(1–2), 662–671 (2008). https://doi.org/10.4028/www.scientific.net/MSF.558-559.545

    Article  Google Scholar 

  47. 47.

    I. Mazurina et al., Grain refinement in aluminum alloy 2219 during ECAP at 250 degrees C. Mater. Sci. Eng. Struct. Mate. Prop. Microstruct. Process. 473(1–2), 297–305 (2008). https://doi.org/10.1016/j.msea.2007.04.112

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Atatürk University Scientific Research Projects Coordination Unit. Project Number: FBA-2017-6001.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Guzide Meltem Lule Senoz.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lule Senoz, G.M., Yilmaz, T.A. Optimization of Equal Channel Angular Pressing Parameters for Improving the Hardness and Microstructure Properties of Al–Zn–Mg Alloy by Using Taguchi Method. Met. Mater. Int. 27, 436–448 (2021). https://doi.org/10.1007/s12540-020-00730-9

Download citation

Keywords

  • Al–Zn–Mg alloy
  • Equal channel angular pressing (ECAP)
  • Microstructure
  • Mechanical properties