Skip to main content
Log in

Passivation Characterization of Nickel-Based Glassy Alloys in Artificial Sea Water

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect of different pH values of artificial sea water on the passivation behavior and the pitting corrosion resistance of Ni70Cr21Si0.5B0.5P8C≤0.1Co≤1Fe≤1 (VZ1) and Ni72.65Cr7.3Si6.7B2.15C≤0.06Fe8.2Mo3 (VZ2) glassy alloys were studied using impedance spectroscopy measurements (EIS), cyclic polarization, and electrochemical frequency modulation techniques. The results showed that the alloys undergo a general corrosion process and tend to form an oxide film on the alloy surface, developing a stable protective layer in the artificial seawater solution. In both alloys, the lower corrosion current density was observed at a pH of 8.5 but had less pitting corrosion resistance. The VZ1 alloy had a relatively lower passive current density value, having a smaller anodic hysteresis loop area compared to the VZ2 alloy. The effect of the medium’s pH on corrosion potential, corrosion current density, pitting potential, and repassivation potential was investigated and discussed, as was surface morphology.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. S.A. Al-Fozan, A.U. Malik, Effect of seawater level on corrosion behavior of different alloys. Desalination 228, 61–67 (2008)

    Article  CAS  Google Scholar 

  2. J. Bhandari, F. Khan, R. Abbassi, V. Garaniya, R. Ojeda, Modelling of pitting corrosion in marine and offshore steel structures—a technical review. J. Loss Prev. Process Ind. 37, 39–62 (2015)

    Article  CAS  Google Scholar 

  3. J. Grosseau-Poussard, J. Dinhut, J. Silvain, R. Sabot, Role of a chromium ion implantation on the corrosion behaviour of nickel in artificial sea water. Appl. Surf. Sci. 151, 49–62 (1999)

    Article  CAS  Google Scholar 

  4. O. Lavigne, T. Shoji, Y. Takeda, EIS pitting temperature determination of A182 nickel based alloy in simulated BWR environment containing dilute seawater. Nucl. Eng. Des. 273, 435–439 (2014)

    Article  CAS  Google Scholar 

  5. A. Al-Hashem, J. Carew, The use of electrochemical impedance spectroscopy to study the effect of chlorine and ammonia residuals on the corrosion of copper-based and nickel-based alloys in seawater. Desalination 150, 255–262 (2002)

    Article  CAS  Google Scholar 

  6. L. Machuca, S. Bailey, R. Gubner, Systematic study of the corrosion properties of selected high-resistance alloys in natural seawater. Corros. Sci. 64, 8–16 (2012)

    Article  CAS  Google Scholar 

  7. H.M.A. El-Lateef, E.-S. Abdel-Rahman, H.S. Mohran, Role of Ni content in improvement of corrosion resistance of Zn–Ni alloy in 3.5% NaCl solution Part I: Polarization and impedance studies. Trans Nonferrous Met Soc China 25, 2807–2816 (2015)

    Article  Google Scholar 

  8. K.M. Emran, H. Al-Refai, Resistivity and passivity characterization of Ni-base glassy alloys in NaOH media. Metals 8, 64 (2018)

    Article  Google Scholar 

  9. K.M. Emran, A.-R. Hanaa, Electrochemical and surface investigation of Ni-Cr glassy alloys in nitric acid solution. Int. J. Electrochem. Sci. 12, 6404–6416 (2017)

    Article  CAS  Google Scholar 

  10. Y. Zeng, C. Qin, N. Nishiyama, A. Inoue, New nickel-based bulk metallic glasses with extremely high nickel content. J. Alloys Compd. 489, 80–83 (2010)

    Article  CAS  Google Scholar 

  11. Z.-D. Zhu, P. Jia, J. Xu, Optimization for toughness in metalloid-free Ni-based bulk metallic glasses. Scr. Mater. 64, 785–788 (2011)

    Article  CAS  Google Scholar 

  12. A. Inoue, W. Zhang, T. Zhang, Thermal stability and mechanical strength of bulk glassy Ni–Nb–Ti–Zr alloys. Mater. Trans. 43, 1952–1956 (2002)

    Article  CAS  Google Scholar 

  13. F.J. Millero, R. Feistel, D.G. Wright, T.J. McDougall, The composition of Standard Seawater and the definition of the Reference-Composition Salinity Scale. Deep Sea Res. Part I 55, 50–72 (2008)

    Article  Google Scholar 

  14. O. Lavigne, C. Alemany-Dumont, B. Normand, M.-H. Berger, C. Duhamel, P. Delichére, The effect of nitrogen on the passivation mechanisms and electronic properties of chromium oxide layers. Corros. Sci. 53, 2087–2096 (2011)

    Article  CAS  Google Scholar 

  15. B. Ter-Ovanessian, C. Alemany-Dumont, B. Normand, Electronic and transport properties of passive films grown on different Ni–Cr binary alloys in relation to the pitting susceptibility. Electrochim. Acta 133, 373–381 (2014)

    Article  CAS  Google Scholar 

  16. J. Jayaraj, D.N.G. Krishna, C. Mallika, U.K. Mudali, Passive film properties and corrosion behavior of Ni–Nb and Ni–Nb–Ta amorphous ribbons in nitric acid and fluorinated nitric acid environments. Mater. Chem. Phys. 151, 318–329 (2015)

    Article  CAS  Google Scholar 

  17. S.T. Arab, K.M. Emran, H.A. Al-Turaif, The electrochemical behavior of Ni-base metallic glasses containing Cr in H2SO4 solutions. J. Korean Chem. Soc. 56, 448–458 (2012)

    Article  CAS  Google Scholar 

  18. H. Li, H. Yu, T. Zhou, B. Yin, S. Yin, Y. Zhang, Effect of tin on the corrosion behavior of sea-water corrosion-resisting steel. Mater. Des. 84, 1–9 (2015)

    Article  CAS  Google Scholar 

  19. F.E.-T. Heakal, A. Fekry, M. Fatayerji, Influence of halides on the dissolution and passivation behavior of AZ91D magnesium alloy in aqueous solutions. Electrochim. Acta 54, 1545–1557 (2009)

    Article  Google Scholar 

  20. A. Pardo, M. Merino, M. Carboneras, A. Coy, R. Arrabal, Pitting corrosion behaviour of austenitic stainless steels with Cu and Sn additions. Corros. Sci. 49, 510–525 (2007)

    Article  CAS  Google Scholar 

  21. P. Jakupi, D. Zagidulin, J. Noël, D. Shoesmith, The impedance properties of the oxide film on the Ni–Cr–Mo Alloy-22 in neutral concentrated sodium chloride solution. Electrochim. Acta 56, 6251–6259 (2011)

    Article  CAS  Google Scholar 

  22. M. Rao, Pitting corrosion of sheets of a nickel-base superalloy. Mater. Corros. 60, 49–52 (2009)

    Article  CAS  Google Scholar 

  23. N. Al-Mobarak, K. Khaled, M.N. Hamed, K. Abdel-Azim, Employing electrochemical frequency modulation for studying corrosion and corrosion inhibition of copper in sodium chloride solutions. Arab. J. Chem. 4, 185–193 (2011)

    Article  CAS  Google Scholar 

  24. E. Kuş, F. Mansfeld, An evaluation of the electrochemical frequency modulation (EFM) technique. Corros. Sci. 48, 965–979 (2006)

    Article  Google Scholar 

  25. P. Singh, V. Srivastava, M. Quraishi, Novel quinoline derivatives as green corrosion inhibitors for mild steel in acidic medium: electrochemical, SEM, AFM, and XPS studies. J. Mol. Liq. 216, 164–173 (2016)

    Article  CAS  Google Scholar 

  26. A.K. Al-Harbi, K.M. Emran, Effect of immersion time on electrochemical and morphology of new Fe–Co metal–metal glassy alloys in acid rain. Arab J Chem 12, 134–141 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Hartmann Thomas from Vacuumschmelze company for providing the specimens. Also, the authors would like to thank Mr. Abdallah Jaber of physical department for conducting surface measurements of the study samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khadijah Mohammed Emran Abdalsamad.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

AL-Refai, H., Abdalsamad, K.M.E. Passivation Characterization of Nickel-Based Glassy Alloys in Artificial Sea Water. Met. Mater. Int. 26, 1688–1696 (2020). https://doi.org/10.1007/s12540-019-00487-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00487-w

Keywords

Navigation