Skip to main content
Log in

Effect of Pre-Straining on High Cycle Fatigue and Fatigue Crack Propagation Behaviors of Precipitation Hardened Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Steel sheet is often shaped by straining to form a final product, and deformation process can influence the fatigue resistance. In this study, high cycle fatigue (HCF) and fatigue crack propagation (FCP) behaviors of precipitation hardened (PH) high strength steel with pre-straining levels of 0, 5 and 9% were investigated. Regardless of pre-straining level, fatigue cracks were found to be initiated at surface pits formed during pickling. The effect of pre-straining was not significant on the HCF resistance of PH steel, while the FCP rates increased with increasing level of pre-straining only in low and intermediate ΔK regimes. It was suggested that marginal increase on HCF resistance of PH steel was due to the combined effect of enhanced resistance to crack initiation and reduced resistance to crack propagation with pre-straining. The effect of pre-straining on HCF and FCP behavior of PH steel was discussed based on micrographic and fractographic observations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Q. Le, H.T. Kang, G. Kridli, A.K. Khosrovaneh, B. Yan, Int. J. Fatigue 31, 607 (2009)

    Article  CAS  Google Scholar 

  2. M.T. Milan, D. Spinelli, W.W. Bose Filho, Int. J. Fatigue 23, 129 (2001)

    Article  CAS  Google Scholar 

  3. X. Long, S.K. Khanna, Int. J. Fatigue 29, 879 (2007)

    Article  CAS  Google Scholar 

  4. K. Fredriksson, A. Melander, M. Hedman, Int. J. Fatigue 10, 139 (1988)

    Article  CAS  Google Scholar 

  5. L. Bracke, K. Verbeken, L. Kestens, J. Penning, Acta Mater. 57, 1512 (2009)

    Article  CAS  Google Scholar 

  6. H. Hayashi, T. Nakagawa, J. Mater. Process. Technol. 46, 455 (1994)

    Article  Google Scholar 

  7. N. Kumar, A.K. Singh, A. Kumar, S. Patel, IOSR-JMCE 11, 53 (2014)

    Google Scholar 

  8. B. Jiang, X. Hu, L. Zhou, H. Wang, Y. Liu, F. Gou, Met. Mater. Int. 25, 1 (2019)

    Article  Google Scholar 

  9. T. Ohashi, ISIJ Int. 43, 957 (2003)

    Article  CAS  Google Scholar 

  10. D.W. Ha, C.Y. Jeong, Korean J. Met. Mater. 56, 177 (2018)

    CAS  Google Scholar 

  11. G. Fourlaris, R. Ellwood, T.B. Jones, Mater. Des. 28, 1198 (2007)

    Article  CAS  Google Scholar 

  12. A. Gustavwn, A. Melander, Fatigue Fract. Eng. Mater. Struct. 18, 201 (1995)

    Article  Google Scholar 

  13. W.G. Seo, D.H. Jeong, H.K. Sung, S.S. Kim, Mater. Charact. 124, 65 (2017)

    Article  CAS  Google Scholar 

  14. A. Gustavsson, M. Larsson, A. Melander, Int. J. Fatigue 19, 613 (1997)

    Article  CAS  Google Scholar 

  15. C.Y. Jeong, Mater. Trans. 54, 2037 (2013)

    Article  CAS  Google Scholar 

  16. K. Berchem, M.G. Hocking, Mater. Charact. 58, 593 (2007)

    Article  CAS  Google Scholar 

  17. H.K. Sung, D.H. Jeong, T.D. Park, J.S. Lee, S.S. Kim, Met. Mater. Int. 22, 755 (2016)

    Article  Google Scholar 

  18. N.L. Phung, N. Marti, A. Blanche, N. Ranc, V. Favier, A. Chrysochoos, N. Saintier, F. Grégori, B. Bacroix, G. Thoquenne, Procedia Eng. 66, 615 (2013)

    Article  CAS  Google Scholar 

  19. J.H. Shin, Y.D. Kim, J.W. Lee, Met. Mater. Int. 24, 1413 (2018)

    Google Scholar 

  20. G.J. Deng, S.T. Tu, Q.Q. Wang, X.C. Zhang, F.Z. Xuan, Int. J. Fatigue 64, 14 (2014)

    Article  CAS  Google Scholar 

  21. S.H. Park, S.M. Kim, D.E. Lee, S.J. Ahn, S.S. Kim, Korean J. Met. Mater. 56, 845 (2018)

    Article  CAS  Google Scholar 

  22. Y. Nagase, S. Suzuki, J. Eng. Mater. Technol. Trans. ASME 114, 317 (1992)

    Article  CAS  Google Scholar 

  23. E. Hornbogen, K.H.Z. Gahr, Acta Metall. 24, 581 (1976)

    Article  CAS  Google Scholar 

  24. D.H. Jeong, W.G. Seo, H.K. Sung, S.S. Kim, Mater. Charact. 121, 103 (2016)

    Article  CAS  Google Scholar 

  25. S.S. Kim, D.H. Jeong, H.K. Sung, Met. Mater. Int. 24, 1 (2018)

    Article  CAS  Google Scholar 

  26. D.H. Jeong, H.K. Sung, T.D. Park, J.S. Lee, S.S. Kim, Met. Mater. Int. 22, 601 (2016)

    Article  CAS  Google Scholar 

  27. A. Ray, S.K. Dhua, Mater. Charact. 37, 1 (1996)

    Article  CAS  Google Scholar 

  28. ASTM Standard E8M Standard Test Methods for Tension Testing of Metallic Materials, Annual Book of ASTM Standards, 03.01 (2009)

  29. ASTM Standard E466-96 Standard Practice for Conducting Force Controlled Constant Amplitude Axial Fatigue Tests of Metallic Materials, Annual Book of ASTM Standards, 03.01 (2002)

  30. ASTM Standard E647 Standard test method for measurement of fatigue crack growth rates, Annual Book of ASTM Standards, 03.01 (2002)

  31. E.Y. Lee, Y.I. Jeong, S.S. Kim, Korean J. Mater. Res. 25, 516 (2015)

    Article  CAS  Google Scholar 

  32. V.M. Radhakrishnan, P.S. Baburamani, Int. J. Fract. 12, 369 (1976)

    CAS  Google Scholar 

  33. S. Nishida, N. Hattori, W. Zhang and M. Koga, in Proceedings of the International Conference on Damage and Fracture Mechanics, 419 (1998)

  34. L.T. Robertson, T.B. Hilditch, P.D. Hodgson, Int. J. Fatigue 30, 587 (2008)

    Article  CAS  Google Scholar 

  35. H.F. Chai, C. Laird, Mater. Sci. Eng. 93, 159 (1987)

    Article  CAS  Google Scholar 

  36. R. Li, Y.D. Wang, W. Liu, C. Geng, Q. Xie, D.E. Brown, K. An, Acta Mater. 165, 336 (2019)

    Article  CAS  Google Scholar 

  37. J. Colin, A. Fatemi, S. Taheri, J. Mater. Sci. 46, 145 (2011)

    Article  CAS  Google Scholar 

  38. J. Wasén, B. Karlsson, Int. J. Fatigue 11, 395 (1989)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Technology Innovation Program (No. 20002700) funded by the Ministry of Trade, Industry & Energy (MOTIE, Korea). This work was also supported by the Engineering Research Center (ERC) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2018R1A5A6075959).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sangshik Kim.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Song, T., Sung, H. et al. Effect of Pre-Straining on High Cycle Fatigue and Fatigue Crack Propagation Behaviors of Precipitation Hardened Steel. Met. Mater. Int. 27, 1383–1391 (2021). https://doi.org/10.1007/s12540-019-00436-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00436-7

Keywords

Navigation