Skip to main content
Log in

Analysis of Strain Rate Sensitivity and Strain Rate Hardening in Co–Cr–Ni–Mo Wires Drawn with Different Drawing Practices

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This study investigates the effect of strain rate (SR) on the strain rate sensitivity (SRS), strain rate work hardening (SRWH) in Co–35Ni–20Cr–10Mo alloy (MP35N) wires, subjected to drawing practices namely full die drawing (FDD) and half die drawing (HDD). The experimental results illustrate that the strength, and SRWH, of the drawn wires, increased with the rise of SR, whereas the SRS(m) and the ductility decreased with the increase of strain rate (10−6 s−1 to 10−2 s−1). However, the relative strength, hardening, and the m values were observed to be higher in the FDD drawn wire when compared to the HDD drawn wire. The increase in strength and hardening rate of the FDD drawn wire with the rise in SR was ascribed to increased dislocation density and reduced twin thickness, and the increased SRS and ductility at low SR were attributed to the increased grain boundary (GB) activities. The HDD drawn wire had a relatively lower strength, SRWH and SRS rate at an SR of 10−6 s−1 when compared to other SR, this was attributed to plastic flow localization, which led to the formation of shear bands in the material. An abnormal SRWH was observed in the HDD drawn wire tested to an SR of 10−2 s−1, where a Stage II hardening peak was observed at a very high strain, this was attributed to the solute segregation of the Mo atoms to the GB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Q. Wei, J. Mater. Sci. 42, 1709–1727 (2007)

    Article  Google Scholar 

  2. U. Kocks, Mater. Sci. Eng. A 317, 181–187 (2001)

    Article  Google Scholar 

  3. R.J. Asaro, S. Suresh, Acta Mater. 53, 3369–3382 (2005)

    Article  Google Scholar 

  4. J. Klepaczko, C. Chiem, J. Mech. Phys. Solids. 34, 29–54 (1986)

    Article  Google Scholar 

  5. S. Yan, H. Yang, H. Li, X. Yao, J. Alloys Compd. 688, 776–786 (2016)

    Article  Google Scholar 

  6. H. Conrad, Mater. Sci. Eng. A 341, 216–228 (2003)

    Article  Google Scholar 

  7. H. Li, Y. Liang, L. Zhao, J. Hu, S. Han, J. Lian, J. Alloys Compd. 709, 566–574 (2017)

    Article  Google Scholar 

  8. P. Rodriguez, Metall. Mater. Trans. A 35, 2697–2705 (2004)

    Article  Google Scholar 

  9. Q. Wei, S. Cheng, K. Ramesh, E. Ma, Mater. Sci. Eng. A 381, 71–79 (2004)

    Article  Google Scholar 

  10. G.T. Gray III, Annu. Rev. Mater. Res. 42, 285–303 (2012)

    Article  Google Scholar 

  11. R. Armstrong, S. Walley, Int. Mater. Rev. 53, 105–128 (2008)

    Article  Google Scholar 

  12. Y. Wang, E. Ma, Acta Mater. 52, 1699–1709 (2004)

    Article  Google Scholar 

  13. H. Yang, Z. Zhang, F. Dong, Q. Duan, Z. Zhang, Mater. Sci. Eng. A 607, 551–558 (2014)

    Article  Google Scholar 

  14. Z. Liang, X. Wang, W. Huang, M. Huang, Acta Mater. 88, 170–179 (2015)

    Article  Google Scholar 

  15. A. Bintu, G. Vincze, C.R. Picu, A.B. Lopes, J.J. Grácio, F. Barlat, Mater. Sci. Eng. A 629, 54–59 (2015)

    Article  Google Scholar 

  16. H. Yang, Y. Tian, Z. Zhang, Z. Zhang, Mater. Sci. Eng. A 655, 251–255 (2016)

    Article  Google Scholar 

  17. E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 30, 1223–1233 (1999)

    Article  Google Scholar 

  18. S. Asgari, J. Mater. Process. Technol. 155–156, 1905–1911 (2004)

    Article  Google Scholar 

  19. E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Int. J. Plast. 17, 1245–1265 (2001)

    Article  Google Scholar 

  20. S. Asgari, E. El-Danaf, S.R. Kalidindi, R.D. Doherty, Metall. Mater. Trans. A 28, 1781–1795 (1997)

    Article  Google Scholar 

  21. A. Chiba, X. Li, M. Kim, Philos. Mag. A 79, 1533–1554 (1999)

    Article  Google Scholar 

  22. S. Asgari, E. El-Danaf, E. Shaji, S. Kalidindi, R. Doherty, Acta Mater. 46, 5795–5806 (1998)

    Article  Google Scholar 

  23. R.N. Wright, Wire Technology.[Electronic Resource]: Process Engineering and Metallurgy (Elsevier, Amsterdam, 2011), p. c2011

    Google Scholar 

  24. S.S. Gvk, M.J. Tan, Z. Liu, Mater. Sci. Eng. A 713, 94–104 (2018)

    Article  Google Scholar 

  25. S.S. Gvk, M.J. Tan and Z. Liu, J. Mater. Eng. Perform. (2018). https://doi.org/10.1007/s11665-018-3755-2

  26. ASTM A931-18. (2018). Standard Test Method for Tension Testing of Wire Ropes and Strand, ASTM International, West Conshohocken, PA. https://doi.org/10.1520/A0931-18

  27. A. Ghosh, Mater. Sci. Eng. A 463, 36–40 (2007)

    Article  Google Scholar 

  28. R.M. Langford, Microsc. Res. Tech. 69, 538–549 (2006)

    Article  Google Scholar 

  29. L.A. Giannuzzi, F.A. Stevie, Micron. 30, 197–204 (1999)

    Article  Google Scholar 

  30. P.R. Munroe, Mater. Char. 60, 2–13 (2009)

    Article  Google Scholar 

  31. J. Li, T. Malis, S. Dionne, Mater. Charact. 57, 64–70 (2006)

    Article  Google Scholar 

  32. G.E. Dieter, D.J. Bacon, Mechanical metallurgy. (McGraw-Hill, London, 1988), SI metric ed./adapted by David Bacon

  33. H. Van Swygenhoven, A. Caro, Phys. Rev. B 58, 11246 (1998)

    Article  Google Scholar 

  34. P. Derlet, A. Hasnaoui, H. Van Swygenhoven, Scripta Mater. 49, 629–635 (2003)

    Article  Google Scholar 

  35. R. Armstrong, F. Zerilli, Mech. Mater. 17, 319–327 (1994)

    Article  Google Scholar 

  36. D. Jia, K. Ramesh, E. Ma, Acta Mater. 51, 3495–3509 (2003)

    Article  Google Scholar 

  37. E. Orowan, Proc. Phys. Soc. 52, 8 (1940)

    Article  Google Scholar 

  38. D. Farkas, H. Van Swygenhoven, P. Derlet, Phys. Rev. B 66, 060101 (2002)

    Article  Google Scholar 

  39. A. Hasnaoui, H. Van Swygenhoven, P. Derlet, Science 300, 1550–1552 (2003)

    Article  Google Scholar 

  40. E. Ma, Nat. Mater. 2, 7 (2003)

    Article  Google Scholar 

  41. E. Ma, Scripta Mater. 49, 663–668 (2003)

    Article  Google Scholar 

  42. T. Nguyen-Minh, J. Sidor, R. Petrov and L. Kestens, IOP Conference Series: Materials Science and Engineering, 012023, IOP Publishing

  43. I. Dillamore, J. Roberts, A. Bush, Metal. Sci. 13, 73–77 (1979)

    Article  Google Scholar 

  44. D.L. Holt, J. Appl. Phys. 41, 3197–3201 (1970)

    Article  Google Scholar 

  45. F. Huang, N. Tao, J. Mater. Sci. Technol. 27, 1–7 (2011)

    Article  Google Scholar 

  46. C. Zener, J. Hollomon, J. Appl. Phys. 17, 69–82 (1946)

    Article  Google Scholar 

  47. L. Lu, Z. You, K. Lu, Scripta Mater. 66, 837–842 (2012)

    Article  Google Scholar 

  48. X. Chen, L. Lu, Scripta Mater. 57, 133–136 (2007)

    Article  Google Scholar 

  49. Standard Specification for Wrought 35Cobalt-35Nickel-20Chromium-10Molybdenum Alloy for Surgical Implant Applications (UNS R30035)

  50. S. Pennycook, Adv. Imaging Electron Phys. 123, 173–206 (2002)

    Article  Google Scholar 

  51. U. Messerschmidt, Dislocation dynamics during plastic deformation (Springer, Berlin, 2010)

    Book  Google Scholar 

  52. R. E. Reed-Hill. (1973). Physical metallurgy principles. [s.l.] : New York : Van Nostrand

  53. D. Harries, A. Marwick, Phil. Trans. R. Soc. Lond. A 295, 197–207 (1980)

    Article  Google Scholar 

  54. M. Bugnet, A. Kula, M. Niewczas, G. Botton, Acta Mater. 79, 66–73 (2014)

    Article  Google Scholar 

  55. J. Hadorn, T. Sasaki, T. Nakata, T. Ohkubo, S. Kamado, K. Hono, Scripta Mater. 93, 28–31 (2014)

    Article  Google Scholar 

  56. X. Shao, Z. Peng, Q. Jin, X. Ma, Acta Mater. 118, 177–186 (2016)

    Article  Google Scholar 

  57. B. Yang, Y. Zhou, D. Chen, X. Ma, Sci. Rep. 3, 1039 (2013)

    Article  Google Scholar 

  58. X. Sauvage, A. Ganeev, Y. Ivanisenko, N. Enikeev, M. Murashkin, R. Valiev, Adv. Eng. Mater. 14, 968–974 (2012)

    Article  Google Scholar 

  59. L. Zhou, G. Liu, X. Ma, K. Lu, Acta Mater. 56, 78–87 (2008)

    Article  Google Scholar 

  60. X. Bian, F. Yuan, X. Wu, Mater. Sci. Eng. A 696, 220–227 (2017)

    Article  Google Scholar 

  61. K.V. Ivanov, E.V. Naydenkin, Scripta Mater. 66, 511–514 (2012)

    Article  Google Scholar 

  62. X.-S. Yang, Y.-J. Wang, G.-Y. Wang, H.-R. Zhai, L. Dai, T.-Y. Zhang, Acta Mater. 108, 252–263 (2016)

    Article  Google Scholar 

  63. P. Kumar, C. Xu, T.G. Langdon, J. Mater. Sci. 44, 3913–3916 (2009)

    Article  Google Scholar 

  64. M. Wang, A. Shan, J. Alloys Compd. 455, L10–L14 (2008)

    Article  Google Scholar 

  65. Y. Wang, E. Ma, Appl. Phys. Lett. 83, 3165–3167 (2003)

    Article  Google Scholar 

  66. J. Ye, Y. Wang, T. Barbee Jr., A. Hamza, Appl. Phys. Lett. 100, 261912 (2012)

    Article  Google Scholar 

  67. Y. Shen, L. Lu, M. Dao, S. Suresh, Scripta Mater. 55, 319–322 (2006)

    Article  Google Scholar 

  68. S. Walley, Metall. Mater. Trans. A 38, 2629–2654 (2007)

    Article  Google Scholar 

  69. M. Aghaie-Khafri, R. Mahmudi, JOM. 50, 50–52 (1998)

    Article  Google Scholar 

  70. F. Wang, B. Li, T. Gao, P. Huang, K. Xu, T. Lu, Surf. Coat. Technol. 228, S254–S256 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported financially by EDB (Economic Development Board) Singapore (COY-15-IPP-140010/198501914Z) under the EDB-IPP scheme through a grant to Heraeus Materials Singapore Pte Ltd Singapore.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sai Srikanth Gvk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gvk, S.S., Tan, M.J. & Liu, Z. Analysis of Strain Rate Sensitivity and Strain Rate Hardening in Co–Cr–Ni–Mo Wires Drawn with Different Drawing Practices. Met. Mater. Int. 25, 1047–1062 (2019). https://doi.org/10.1007/s12540-019-00239-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00239-w

Keywords

Navigation