Skip to main content
Log in

Anisotropy of the Wear and Mechanical Properties of Extruded Aluminum Alloy Rods (AA2024-T4)

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The anisotropy of the wear and mechanical properties of extruded aluminum alloy rods (AA2024-T4) were investigated by ball-on-disk wear testing, hardness and tensile testing, optical microscopy and field-emission scanning electron microscopy, and electron backscatter diffraction. The microstructure, particularly the grain size, grain morphology, and distribution of intermetallic compounds, differed according to the extrusion direction. The results show that the extruded aluminum alloy rod exhibits anisotropic wear and mechanical properties because of this microstructural anisotropy effect. The tensile tests showed that the yield strength, ultimate tensile strength, and elongation differed according to the extrusion direction. It was confirmed that the yield strength and ultimate tensile strength were the highest in the longitudinal of the specimens. In the hardness and thermal property testing, the transverse specimens showed the highest hardness, thermal conductivity, and specific heat capacity. In wear testing, the wear rate and friction temperature in each direction under equal wear conditions differed because of the microstructural anisotropy effect. As the vertical load and linear velocity were increased in all directions, the wear behaviors of abrasion wear and small delamination, adhesion wear and delamination, galling, and seizure occurred in sequential order. However, the point at which the wear behavior changed differed for each direction. The transition of wear behavior occurred more slowly for transverse specimens than those of the other two directions (LD, 45°).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. M. Bauser, K. Siegert, Extrusion (Ohio, ASM International, 2006)

    Google Scholar 

  2. P.K. Saha, Aluminum extrusion technology (Ohio, Asm International, 2000)

    Google Scholar 

  3. T. Dursun, C. Soutis, Mater. Des. 1980–2015(56), 862–871 (2014)

    Article  Google Scholar 

  4. G.S. Cole, A.M. Sherman, Mater. Charact. 35, 3–9 (1995)

    Article  Google Scholar 

  5. B. Rebba, N. Ramanaiah, Proc. Mater. Sci. 6, 1161–1169 (2014)

    Article  Google Scholar 

  6. J.C. Malas, S. Venugopal, T. Seshacharyulu, Mater. Sci. Eng. A 368, 41–47 (2004)

    Article  Google Scholar 

  7. H. Li, W. Xu, Z. Wang, B. Fang, R. Song, Z. Zheng, Mater. Sci. Eng. A 650, 254–263 (2016)

    Article  Google Scholar 

  8. A. Fjeldly, H.J. Roven, Acta Mater. 44, 3497–3504 (1996)

    Article  Google Scholar 

  9. S. Li, O. Engler, P. Van Houtte, Modell. Simul. Mater. Sci. Eng. 13, 783 (2005)

    Article  Google Scholar 

  10. M. Tajally, E. Emadoddin, Mater. Des. 32, 1594–1599 (2011)

    Article  Google Scholar 

  11. Z. Yan, H. Zhang, P. Chen, W. Wang, J. Wuhan Univ. Technol. Mater. Sci. Ed. 32, 155–161 (2017)

    Article  Google Scholar 

  12. W. Xin-yun, H.E. Hu, X. Ju-chen, Mater. Sci. Eng. A 515, 1–9 (2009)

    Article  Google Scholar 

  13. S. Mishra, K. Kulkarni, N.P. Gurao, Mater. Des. 87, 507–519 (2015)

    Article  Google Scholar 

  14. J. Ďurišin, M. Ďurišinová, K. Besterci, Kovové Materiály 45, 269–274 (2007)

    Google Scholar 

  15. D.R. Askeland, P. Webster, The science and engineering of materials (Springer, New York, 1996)

    Book  Google Scholar 

  16. S. Wang, M. Starink, Int. Mater. Rev. 50, 193–215 (2005)

    Article  Google Scholar 

  17. J.R. Davis, Alloying: understanding the basics (Ohio, ASM International, 2001)

    Google Scholar 

  18. A. Chemin, D. Marques, L. Bisanha, A.D.J. Motheo, W.W. Bose Filho, C.O.F. Ruchert, Mater. Des. 53, 118–123 (2014)

    Article  Google Scholar 

  19. Y. Zhao, W. Zhang, C. Yang, D. Zhang, Z. Wang, J. Mater. Res. 33, 898–911 (2018)

    Article  Google Scholar 

  20. A.E. Hughes, N. Birbilis, J.M. Mol, S.J. Garcia, X. Zhou, G.E. Thompson, in Recent Trends in Processing and Degradation of Aluminium Alloys, (InTech, 2011)

  21. J. Jung, J.-J. Oak, Y.-H. Kim, Y.J. Cho, Y.H. Park, Met. Mater. Int. 23, 1097–1105 (2017)

    Article  Google Scholar 

  22. S.-H. Kim, J.U. Lee, Y.J. Kim, J.O. Choi, J.-H. Lee, S.H. Park, Korean J. Met. Mater. 56, 40–48 (2018)

    Article  Google Scholar 

  23. Y.O. Yoon, S.K. Kim, J. KFS. 30, 210–216 (2010)

    Google Scholar 

  24. A. Blake, Handbook of Mechanics, Materials, and Structures (Wiley, Hoboken, 1985)

    Google Scholar 

  25. M.-Z. Xing, Y.-G. Wang, Z.-X. Jiang, Def. Technol. 9, 193–200 (2013)

    Article  Google Scholar 

  26. T. Ying, M.Y. Zheng, Z.T. Li, X.G. Qiao, J. Alloy. Compd. 608, 19–24 (2014)

    Article  Google Scholar 

  27. A.K. Prasada Rao, K. Das, B.S. Murty, M. Chakraborty, Wear 257, 148–153 (2004)

    Article  Google Scholar 

  28. E.S. Lee, J.-J. Oak, J. Bang, Y.H. Park, J. Alloy. Compd. 689, 145–152 (2016)

    Article  Google Scholar 

  29. J.F. Archard, Wear 2, 438–455 (1958)

    Article  Google Scholar 

  30. G. Sharma, P.K. Limaye, R.V. Ramanujan, M. Sundararaman, N. Prabhu, Mater. Sci. Eng. A 386, 408–414 (2004)

    Article  Google Scholar 

  31. Y. Ono, Progress Theoret. Phys. 46, 757–775 (1971)

    Article  Google Scholar 

  32. Tribology Series, (Amsterdam, Elsevier, 1987), pp. 351–495

  33. B.C. Yu, K.-C. Bae, J.K. Jung, Y.-H. Kim, Y.H. Park, Met. Mater. Int. 24, 576–585 (2018)

    Article  Google Scholar 

  34. L. Samuels, E. Doyle, D. Turley, Fundam. Frict. Wear Mater. 1, 13–41 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yong Ho Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C.M., Jung, J., Yu, B.C. et al. Anisotropy of the Wear and Mechanical Properties of Extruded Aluminum Alloy Rods (AA2024-T4). Met. Mater. Int. 25, 71–82 (2019). https://doi.org/10.1007/s12540-018-0164-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0164-x

Keywords

Navigation