Skip to main content
Log in

Effect of the Deformation State on the Mechanical Degradation of Cu Metal Films on Flexible PI Substrates During Cyclic Sliding Testing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The effect that the deformation state exerts on both the electrical and the mechanical degradation of Cu thin film on a flexible PI substrate was investigated via cyclic sliding test. Two opposite types of deformation (tension and compression) were applied to Cu thin film depending on its outward or inward placement in the cyclic sliding test system. During the cyclic sliding test, the change in electrical resistance of the Cu thin films was monitored using a two-point probe method. Systematic surface observation of deformed Cu thin film under the two opposite types of deformation was performed following specific cycles of sliding motion. Surface observation based on field emission scanning electron microscopy and 3D confocal laser scanning microscopy had been done to quantify the evolution of intrusion extrusions and surface roughness on the deformed Cu thin film. The distribution of microcracks significantly depended on the type of stress/strain applied to the Cu thin film on a flexible PI substrate during the cyclic sliding test. Finite element analysis was performed to explain the deformation behavior of the Cu thin film on a flexible PI substrate during the cyclic sliding test.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. S. Das, R. Gulotty, A.V.V. Sumant, A. Roelofs, Nano Lett. 14, 2861 (2014)

    Article  Google Scholar 

  2. L.-H. Xu, Q.-D. Ou, Y.-Q. Li, Y.-B. Zhang, X.-D. Zhao, H.-Y. Xiang, J.-D. Chen, L. Zhou, S.-T. Lee, J.-X. Tang, ACS Nano 10, 1625 (2016)

    Article  Google Scholar 

  3. S.R. Forrest, Nature 428, 911 (2004)

    Article  Google Scholar 

  4. X. Shen, T. Qian, J. Zhou, N. Xu, T. Yang, C. Yan, A.C.S. Appl, Mater. Interfaces 7, 25298 (2015)

    Article  Google Scholar 

  5. L. Yang, T. Zhang, H. Zhou, S.C. Price, B.J. Wiley, W. You, A.C.S. Appl, Mater. Interfaces 3, 4075 (2011)

    Article  Google Scholar 

  6. T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. U. S. A. 101, 9966 (2004)

    Article  Google Scholar 

  7. Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, M. McCreary, Nature 423, 136 (2003)

    Article  Google Scholar 

  8. A. Bag, M.K. Hota, S. Mallik, C.K. Maiti, Semicond. Sci. Technol. 28, 55002 (2013)

    Article  Google Scholar 

  9. A. Bozkurt, A. Lal, Sens. Actuators A Phys. 169, 89 (2011)

    Article  Google Scholar 

  10. J. Gao, P.K. Chow, A.V. Thomas, T.-M. Lu, T. Borca-Tasciuc, N. Koratkar, Appl. Phys. Lett. 105, 123108 (2014)

    Article  Google Scholar 

  11. N. Kränzlin, S. Ellenbroek, D. Durán-Martín, M. Niederberger, Angew. Chem. Int. Ed. 51, 4743 (2012)

    Article  Google Scholar 

  12. M. Hasan, J.F. Rohan, J. Electrochem. Soc. 157, D278 (2010)

    Article  Google Scholar 

  13. Y. Shacham-Diamand, Y. Sverdlov, Microelectron. Eng. 50, 525 (2000)

    Article  Google Scholar 

  14. Y. Shacham-Diamand, V.M. Dubin, Microelectron. Eng. 33, 47 (1997)

    Article  Google Scholar 

  15. Y.-T. Kwon, Y.-I. Lee, S. Kim, K.-J. Lee, Y.-H. Choa, Appl. Surf. Sci. 396, 1239 (2017)

    Article  Google Scholar 

  16. Y. Chang, C. Yang, X.-Y. Zheng, D.-Y. Wang, Z.-G. Yang, A.C.S. Appl, Mater. Interfaces 6, 768 (2014)

    Article  Google Scholar 

  17. I.N. Kholmanov, S.H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A.J.G. Zarbin, R.S. Ruoff, ACS Nano 7, 1811 (2013)

    Article  Google Scholar 

  18. N.D. Sankir, R.O. Claus, J. Mater. Process. Technol. 196, 155 (2008)

    Article  Google Scholar 

  19. T. Aizawa, K. Okagawa, M. Kashani, J. Mater. Process. Technol. 213, 1095 (2013)

    Article  Google Scholar 

  20. Y.-T. Kim, J.-H. Kim, D.-K. Kim, Y.-H. Kwon, Int. J. Precis. Eng. Manuf. 16, 981 (2015)

    Article  Google Scholar 

  21. S. Kamiya, H. Furuta, M. Omiya, Surf. Coat. Technol. 202, 1084 (2007)

    Article  Google Scholar 

  22. I.H. Kazi, P.M. Wild, T.N. Moore, M. Sayer, Thin Solid Films 515, 2602 (2006)

    Article  Google Scholar 

  23. B.-I. Noh, J.-W. Yoon, S.-B. Jung, Met. Mater. Int. 16, 779 (2010)

    Article  Google Scholar 

  24. A. Bag, K.-S. Park, S.-H. Choi, Met. Mater. Int. 23, 673 (2017)

    Article  Google Scholar 

  25. S.P. Gorkhali, D.R. Cairns, G.P. Crawford, J. Soc. Inf. Disp. 12, 45 (2004)

    Article  Google Scholar 

  26. M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, ACS Nano 8, 5154 (2014)

    Article  Google Scholar 

  27. S. Grego, J. Lewis, E. Vick, D. Temple, J. Soc. Inf. Disp. 13, 575 (2005)

    Article  Google Scholar 

  28. J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Appl. Phys. Lett. 85, 3450 (2004)

    Article  Google Scholar 

  29. B.-S. Nguyen, J.-F. Lin, D.-C. Perng, A.C.S. Appl, Mater. Interfaces 6, 19566 (2014)

    Article  Google Scholar 

  30. T.C. Li, J.F. Lin, J. Mater. Sci. Mater. Electron. 26, 250 (2014)

    Article  Google Scholar 

  31. C.K. Cho, W.J. Hwang, K. Eun, S.H. Choa, S.I. Na, H.K. Kim, Sol. Energy Mater. Sol. Cells 95, 3269 (2011)

    Article  Google Scholar 

  32. A. Bag, S.-H. Choi, Mater. Charact. 129, 186 (2017)

    Article  Google Scholar 

  33. S.-J. Joo, S.-H. Park, C.-J. Moon, H.-S. Kim, A.C.S. Appl, Mater. Interfaces 7, 5674 (2015)

    Article  Google Scholar 

  34. A. Bag, S.-H. Choi, Mater. Sci. Eng. A 708, 60 (2017)

    Article  Google Scholar 

  35. B.-J. Kim, Y. Cho, M.-S. Jung, H.-A.-S. Shin, M.-W. Moon, H.N. Han, K.T. Nam, Y.-C. Joo, I.-S. Choi, Small 8, 3300 (2012)

    Article  Google Scholar 

  36. B.J. Kim, H.A.S. Shin, J.H. Lee, T.Y. Yan, T. Haas, P. Gruber, I.S. Chou, O. Kraft, Y.C. Joo, J. Mater. Res. 29, 2827 (2014)

    Article  Google Scholar 

  37. B.-J. Kim, T. Haas, A. Friederich, J.-H. Lee, D.-H. Nam, J.R. Binder, W. Bauer, I.-S. Choi, Y.-C. Joo, P.A. Gruber, O. Kraft, Nanotechnology 25, 125706 (2014)

    Article  Google Scholar 

  38. J. Lewis, Mater. Today 9, 38 (2006)

    Article  Google Scholar 

  39. C.-Y. Lim, J.-K. Park, Y. Kim, J.-I. Han, J. Int. Counc. Electr. Eng. 2, 237 (2012)

    Article  Google Scholar 

  40. B. Kim, H. Shin, J. Lee, Y. Joo, Jpn. J. Appl. Phys. 55, 06JF01 (2016)

    Article  Google Scholar 

  41. B. Hwang, H.-A.-S. Shin, T. Kim, Y.-C. Joo, S.M. Han, Small 10, 3397 (2014)

    Article  Google Scholar 

  42. A.B. Kale, A. Bag, J.-H. Hwang, E.G. Castle, M.J. Reece, S.-H. Choi, Mater. Sci. Eng. A 707, 362 (2017)

    Article  Google Scholar 

  43. ARAMIS—3D Motion and Deformation Sensor (2018), https://www.gom.com/metrology-systems/aramis.html. Accessed 8 May 2018

  44. ImageJ—Image Processing and Analysis in Java (2018), https://imagej.nih.gov/ij/. Accessed 8 May 2018

  45. D. Wang, C.A. Volkert, O. Kraft, Mater. Sci. Eng. A 493, 267 (2008)

    Article  Google Scholar 

  46. C.H. Li, P.K.S. Tam, Pattern Recognit. Lett. 19, 771 (1998)

    Article  Google Scholar 

  47. DuPont™ Kapton® Summary of Properties (Du Pont Co., 2017), http://www.dupont.com/content/dam/dupont/products-and-services/membranes-and-films/polyimde-films/documents/DEC-Kapton-summary-of-properties.pdf. Accessed 8 May 2018

  48. C.Y. Kim, J.H. Song, K.J. Park, Trans. Korean Soc. Mech. Eng. A 36, 1529 (2012)

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01057208) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A6A1030419).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shi-Hoon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bag, A., Park, KS. & Choi, SH. Effect of the Deformation State on the Mechanical Degradation of Cu Metal Films on Flexible PI Substrates During Cyclic Sliding Testing. Met. Mater. Int. 25, 45–63 (2019). https://doi.org/10.1007/s12540-018-0155-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0155-y

Keywords

Navigation