Advertisement

Effect of the Deformation State on the Mechanical Degradation of Cu Metal Films on Flexible PI Substrates During Cyclic Sliding Testing

  • Atanu Bag
  • Ki-Seong Park
  • Shi-Hoon Choi
Article
  • 122 Downloads

Abstract

The effect that the deformation state exerts on both the electrical and the mechanical degradation of Cu thin film on a flexible PI substrate was investigated via cyclic sliding test. Two opposite types of deformation (tension and compression) were applied to Cu thin film depending on its outward or inward placement in the cyclic sliding test system. During the cyclic sliding test, the change in electrical resistance of the Cu thin films was monitored using a two-point probe method. Systematic surface observation of deformed Cu thin film under the two opposite types of deformation was performed following specific cycles of sliding motion. Surface observation based on field emission scanning electron microscopy and 3D confocal laser scanning microscopy had been done to quantify the evolution of intrusion extrusions and surface roughness on the deformed Cu thin film. The distribution of microcracks significantly depended on the type of stress/strain applied to the Cu thin film on a flexible PI substrate during the cyclic sliding test. Finite element analysis was performed to explain the deformation behavior of the Cu thin film on a flexible PI substrate during the cyclic sliding test.

Keywords

Thin film Cyclic sliding Finite element analysis (FEA) Microcrack Scanning electron microscopy (SEM) 

Notes

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2015R1D1A1A01057208) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2014R1A6A1030419).

References

  1. 1.
    S. Das, R. Gulotty, A.V.V. Sumant, A. Roelofs, Nano Lett. 14, 2861 (2014)CrossRefGoogle Scholar
  2. 2.
    L.-H. Xu, Q.-D. Ou, Y.-Q. Li, Y.-B. Zhang, X.-D. Zhao, H.-Y. Xiang, J.-D. Chen, L. Zhou, S.-T. Lee, J.-X. Tang, ACS Nano 10, 1625 (2016)CrossRefGoogle Scholar
  3. 3.
    S.R. Forrest, Nature 428, 911 (2004)CrossRefGoogle Scholar
  4. 4.
    X. Shen, T. Qian, J. Zhou, N. Xu, T. Yang, C. Yan, A.C.S. Appl, Mater. Interfaces 7, 25298 (2015)CrossRefGoogle Scholar
  5. 5.
    L. Yang, T. Zhang, H. Zhou, S.C. Price, B.J. Wiley, W. You, A.C.S. Appl, Mater. Interfaces 3, 4075 (2011)CrossRefGoogle Scholar
  6. 6.
    T. Someya, T. Sekitani, S. Iba, Y. Kato, H. Kawaguchi, T. Sakurai, Proc. Natl. Acad. Sci. U. S. A. 101, 9966 (2004)CrossRefGoogle Scholar
  7. 7.
    Y. Chen, J. Au, P. Kazlas, A. Ritenour, H. Gates, M. McCreary, Nature 423, 136 (2003)CrossRefGoogle Scholar
  8. 8.
    A. Bag, M.K. Hota, S. Mallik, C.K. Maiti, Semicond. Sci. Technol. 28, 55002 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Bozkurt, A. Lal, Sens. Actuators A Phys. 169, 89 (2011)CrossRefGoogle Scholar
  10. 10.
    J. Gao, P.K. Chow, A.V. Thomas, T.-M. Lu, T. Borca-Tasciuc, N. Koratkar, Appl. Phys. Lett. 105, 123108 (2014)CrossRefGoogle Scholar
  11. 11.
    N. Kränzlin, S. Ellenbroek, D. Durán-Martín, M. Niederberger, Angew. Chem. Int. Ed. 51, 4743 (2012)CrossRefGoogle Scholar
  12. 12.
    M. Hasan, J.F. Rohan, J. Electrochem. Soc. 157, D278 (2010)CrossRefGoogle Scholar
  13. 13.
    Y. Shacham-Diamand, Y. Sverdlov, Microelectron. Eng. 50, 525 (2000)CrossRefGoogle Scholar
  14. 14.
    Y. Shacham-Diamand, V.M. Dubin, Microelectron. Eng. 33, 47 (1997)CrossRefGoogle Scholar
  15. 15.
    Y.-T. Kwon, Y.-I. Lee, S. Kim, K.-J. Lee, Y.-H. Choa, Appl. Surf. Sci. 396, 1239 (2017)CrossRefGoogle Scholar
  16. 16.
    Y. Chang, C. Yang, X.-Y. Zheng, D.-Y. Wang, Z.-G. Yang, A.C.S. Appl, Mater. Interfaces 6, 768 (2014)CrossRefGoogle Scholar
  17. 17.
    I.N. Kholmanov, S.H. Domingues, H. Chou, X. Wang, C. Tan, J.-Y. Kim, H. Li, R. Piner, A.J.G. Zarbin, R.S. Ruoff, ACS Nano 7, 1811 (2013)CrossRefGoogle Scholar
  18. 18.
    N.D. Sankir, R.O. Claus, J. Mater. Process. Technol. 196, 155 (2008)CrossRefGoogle Scholar
  19. 19.
    T. Aizawa, K. Okagawa, M. Kashani, J. Mater. Process. Technol. 213, 1095 (2013)CrossRefGoogle Scholar
  20. 20.
    Y.-T. Kim, J.-H. Kim, D.-K. Kim, Y.-H. Kwon, Int. J. Precis. Eng. Manuf. 16, 981 (2015)CrossRefGoogle Scholar
  21. 21.
    S. Kamiya, H. Furuta, M. Omiya, Surf. Coat. Technol. 202, 1084 (2007)CrossRefGoogle Scholar
  22. 22.
    I.H. Kazi, P.M. Wild, T.N. Moore, M. Sayer, Thin Solid Films 515, 2602 (2006)CrossRefGoogle Scholar
  23. 23.
    B.-I. Noh, J.-W. Yoon, S.-B. Jung, Met. Mater. Int. 16, 779 (2010)CrossRefGoogle Scholar
  24. 24.
    A. Bag, K.-S. Park, S.-H. Choi, Met. Mater. Int. 23, 673 (2017)CrossRefGoogle Scholar
  25. 25.
    S.P. Gorkhali, D.R. Cairns, G.P. Crawford, J. Soc. Inf. Disp. 12, 45 (2004)CrossRefGoogle Scholar
  26. 26.
    M. Amjadi, A. Pichitpajongkit, S. Lee, S. Ryu, I. Park, ACS Nano 8, 5154 (2014)CrossRefGoogle Scholar
  27. 27.
    S. Grego, J. Lewis, E. Vick, D. Temple, J. Soc. Inf. Disp. 13, 575 (2005)CrossRefGoogle Scholar
  28. 28.
    J. Lewis, S. Grego, B. Chalamala, E. Vick, D. Temple, Appl. Phys. Lett. 85, 3450 (2004)CrossRefGoogle Scholar
  29. 29.
    B.-S. Nguyen, J.-F. Lin, D.-C. Perng, A.C.S. Appl, Mater. Interfaces 6, 19566 (2014)CrossRefGoogle Scholar
  30. 30.
    T.C. Li, J.F. Lin, J. Mater. Sci. Mater. Electron. 26, 250 (2014)CrossRefGoogle Scholar
  31. 31.
    C.K. Cho, W.J. Hwang, K. Eun, S.H. Choa, S.I. Na, H.K. Kim, Sol. Energy Mater. Sol. Cells 95, 3269 (2011)CrossRefGoogle Scholar
  32. 32.
    A. Bag, S.-H. Choi, Mater. Charact. 129, 186 (2017)CrossRefGoogle Scholar
  33. 33.
    S.-J. Joo, S.-H. Park, C.-J. Moon, H.-S. Kim, A.C.S. Appl, Mater. Interfaces 7, 5674 (2015)CrossRefGoogle Scholar
  34. 34.
    A. Bag, S.-H. Choi, Mater. Sci. Eng. A 708, 60 (2017)CrossRefGoogle Scholar
  35. 35.
    B.-J. Kim, Y. Cho, M.-S. Jung, H.-A.-S. Shin, M.-W. Moon, H.N. Han, K.T. Nam, Y.-C. Joo, I.-S. Choi, Small 8, 3300 (2012)CrossRefGoogle Scholar
  36. 36.
    B.J. Kim, H.A.S. Shin, J.H. Lee, T.Y. Yan, T. Haas, P. Gruber, I.S. Chou, O. Kraft, Y.C. Joo, J. Mater. Res. 29, 2827 (2014)CrossRefGoogle Scholar
  37. 37.
    B.-J. Kim, T. Haas, A. Friederich, J.-H. Lee, D.-H. Nam, J.R. Binder, W. Bauer, I.-S. Choi, Y.-C. Joo, P.A. Gruber, O. Kraft, Nanotechnology 25, 125706 (2014)CrossRefGoogle Scholar
  38. 38.
    J. Lewis, Mater. Today 9, 38 (2006)CrossRefGoogle Scholar
  39. 39.
    C.-Y. Lim, J.-K. Park, Y. Kim, J.-I. Han, J. Int. Counc. Electr. Eng. 2, 237 (2012)CrossRefGoogle Scholar
  40. 40.
    B. Kim, H. Shin, J. Lee, Y. Joo, Jpn. J. Appl. Phys. 55, 06JF01 (2016)CrossRefGoogle Scholar
  41. 41.
    B. Hwang, H.-A.-S. Shin, T. Kim, Y.-C. Joo, S.M. Han, Small 10, 3397 (2014)CrossRefGoogle Scholar
  42. 42.
    A.B. Kale, A. Bag, J.-H. Hwang, E.G. Castle, M.J. Reece, S.-H. Choi, Mater. Sci. Eng. A 707, 362 (2017)CrossRefGoogle Scholar
  43. 43.
    ARAMIS—3D Motion and Deformation Sensor (2018), https://www.gom.com/metrology-systems/aramis.html. Accessed 8 May 2018
  44. 44.
    ImageJ—Image Processing and Analysis in Java (2018), https://imagej.nih.gov/ij/. Accessed 8 May 2018
  45. 45.
    D. Wang, C.A. Volkert, O. Kraft, Mater. Sci. Eng. A 493, 267 (2008)CrossRefGoogle Scholar
  46. 46.
    C.H. Li, P.K.S. Tam, Pattern Recognit. Lett. 19, 771 (1998)CrossRefGoogle Scholar
  47. 47.
  48. 48.
    C.Y. Kim, J.H. Song, K.J. Park, Trans. Korean Soc. Mech. Eng. A 36, 1529 (2012)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Printed Electronics EngineeringSunchon National UniversitySuncheonRepublic of Korea
  2. 2.School of Advanced Materials Science & EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations