Microstructure, Tensile and Fatigue Properties of Al–5 wt.%Mg Alloy Manufactured by Twin Roll Strip Casting

  • Joon-Young Heo
  • Min-Seok Baek
  • Kwang-Jun Euh
  • Kee-Ahn Lee
Article
  • 43 Downloads

Abstract

This study investigated the microstructure, tensile and fatigue properties of Al–5 wt.%Mg alloy manufactured by twin roll strip casting. Strips cast as a fabricated (F) specimen and a specimen heat treated (O) at 400 °C/5 h were produced and compared. In the F specimen, microstructural observation discovered clustered precipitates in the center area, while in the O specimen precipitates were relatively more evenly distributed. Al, Al6(Mn, Fe), Mg2Al3 and Mg2Si phases were observed. However, most of the Mg2Al3 phase in the heat-treated O specimen was dissolved. A room temperature tensile test measured yield strength of 177.7 MPa, ultimate tensile strength of 286.1 MPa and elongation of 11.1% in the F specimen and 167.7 MPa (YS), 301.5 MPa (UTS) and 24.6% (EL) in the O specimen. A high cycle fatigue test measured a fatigue limit of 145 MPa in the F specimen and 165 MPa in the O specimen, and the O specimen achieved greater fatigue properties in all fatigue stress conditions. The tensile and fatigue fracture surfaces of the above-mentioned specimens were observed, and this study attempted to investigate the tensile and fatigue deformation behavior of strip cast Al–5 wt.%Mg based on the findings.

Keywords

Twin roll strip casting Al–5 wt.%Mg Tensile Fatigue Heat-treatment 

Notes

Acknowledgements

This research was financially supported by the Ministry of Trade, Industry and Energy (MOTIE) and Korea Institute for Advancement of Technology (KIAT) through the Materials and Component Alliance.

References

  1. 1.
    W.S. Miller, L. Zhuang, J. Bottema, A.J. Wittebrood, P. De Smet, A. Hazler, A. Vieregge, Mater. Sci. Eng. A 280, 27 (2000)CrossRefGoogle Scholar
  2. 2.
    H. Hayashi, T. Nakagawa, J. Mater. Process. Technol. 46, 455 (1994)CrossRefGoogle Scholar
  3. 3.
    M. Yilirim, D. Ozyurek, Mater. Des. 51, 767 (2013)CrossRefGoogle Scholar
  4. 4.
    A. Thirugnanam, K. Sukumaran, U.T.S. Pillai, K. Raghukandan, B.C. Pai, Mater. Sci. Eng. A 445, 405 (2007)CrossRefGoogle Scholar
  5. 5.
    H. Mayer, M. Papakyriacou, B. Zettl, S.E. Stanzl-Tschegg, Int. J. Fatigue 25, 245 (2003)CrossRefGoogle Scholar
  6. 6.
    H.W. Kim, J.H. Cho, C.Y. Lim, S.B. Kang, Trends Met. Mater. Eng. 23, 16 (2010)Google Scholar
  7. 7.
    S. Komura, P.B. Berbon, M. Furukawa, Z. Horita, M. Nemoto, T.G. Langdon, Scr. Mater. 38, 12 (1998)CrossRefGoogle Scholar
  8. 8.
    T. Mukai, M. Kawazoe, K. Higashi, Mater. Sci. Eng. A 247, 270 (1998)CrossRefGoogle Scholar
  9. 9.
    M. Mabuchi, H. Iwasaki, K. Higashi, Nanostruct. Mater. 8, 1105 (1997)CrossRefGoogle Scholar
  10. 10.
    R.W. Fonda, P.S. Pao, H.N. Jones, C.R. Feng, B.J. Connolly, A.J. Davenport, Mater. Sci. Eng. A 519, 1 (2009)CrossRefGoogle Scholar
  11. 11.
    A. Vinogradov, S. Nagasaki, V. Patlan, K. Kitagawa, M. Kwazoe, Nanostruct. Mater. 11, 7 (1999)CrossRefGoogle Scholar
  12. 12.
    R. Ghelichi, D. Macdonald, S. Bagherifard, H. Jahed, M. Guagliano, B. Jodoin, Acta Mater. 60, 6555 (2012)CrossRefGoogle Scholar
  13. 13.
    M. Dundar, Y. Birol, A.S. Akkurt, Mater. Sci. Forum 396, 1647 (2002)CrossRefGoogle Scholar
  14. 14.
    F. Birol, Y. Birol, Inst. Mater. Eng. Aust. 28, 338 (2004)Google Scholar
  15. 15.
    M. Cieslar, J. Bajer, M. Zimina, M. Slapakova, O. Grydin, Mater. Sci. Eng. 179, 1 (2017)Google Scholar
  16. 16.
    G.S. Ham, K.J. Euh, Y.M. Rhyim, K.A. Lee, Mater. Trans. 57, 78 (2016)CrossRefGoogle Scholar
  17. 17.
    C.H. Gras, M. Meredith, J.D. Hunt, J. Mater. Process. Technol. 167, 62 (2005)CrossRefGoogle Scholar
  18. 18.
    J.G. Lee, S.S. Park, S.B. Lee, H.T. Chung, N.J. Kim, Scr. Mater. 53, 693 (2005)CrossRefGoogle Scholar
  19. 19.
    J.T. Choi, Y.H. Kim, K.H. Oh, H.Y. Ra, Korean J. Met. Mater. 34, 1005 (1996)Google Scholar
  20. 20.
    Y. Birol, J. Alloys Compd. 471, 122 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Wang, J.C. Feng, Y.X. Wang, Mater. Sci. Technol. 24, 827 (2008)CrossRefGoogle Scholar
  22. 22.
    Y. Liu, G. Huang, Y. Sun, L. Zhang, Z. Huang, J. Wang, C. Liu, Materials 9, 88 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Zha, Y. Li, R.H. Mathiesen, R. Bjorge, H.J. Roven, Acta Mater. 84, 42 (2015)CrossRefGoogle Scholar
  24. 24.
    W.F. Smith, Structure and Properties of Engineering Alloys (McGraw-Hill, New York, 1993)Google Scholar
  25. 25.
    B.H. Lee, S.H. Kim, J.H. Park, H.W. Kim, J.C. Lee, Mater. Sci. Eng. A 657, 115 (2016)CrossRefGoogle Scholar
  26. 26.
    O. Ryen, B. Holmedal, O. Nijs, E. Nes, E. Sjolander, H.E. Ekstrom, Metall. Mater. Trans. A 37, 1999 (2006)CrossRefGoogle Scholar
  27. 27.
    P.H. Chang, J. Mater. Sci. Lett. 7, 270 (1988)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringInha UniversityIncheonKorea
  2. 2.Korea Institute of Materials ScienceChangwonKorea

Personalised recommendations