Advertisement

Metals and Materials International

, Volume 24, Issue 5, pp 945–954 | Cite as

Effect of TiC Nanoparticles Supported by Ti Powders on the Solidification Behavior and Microstructure of Pure Aluminum

  • Bingyi Zhao
  • Qizhou Cai
  • Xinwei Li
  • Bing Li
  • Jingfan Cheng
Article
  • 104 Downloads

Abstract

A novel grain refiner consisting of TiC nanoparticles (NPs) supported by Ti powders (abbr. TiC/Ti refiner) was prepared by high-energy milling. The addition of 0.5 wt% TiC/Ti refiner converted the structure of pure Al from coarse dendrites to fine equiaxed grains with the average grain size of 114.7 μm, and it also increased the nucleation temperature of α(Al) from 656.7 to 664.4 °C. When TiC/Ti refiner was introduced into Al melt, the heat released from the Al–Ti reaction promoted the uniform dispersion of TiC NPs. The dissolution of the reaction product TiAl3 released Ti atoms into the melt and thus formed a “Ti-rich transition region” around TiC NPs. The dispersive TiC NPs could act as the heterogeneous nuclei for α(Al) and the “Ti-rich transition region” further improved the lattice orientation relationship between Al (\(\bar{1}1\bar{1}\)) and TiC (\(11\bar{1}\)) planes, which eventually resulted in the refining of α(Al).

Keywords

Metals Casting Grain refinement Scanning/transmission electron microscopy (STEM) Nucleation 

Notes

Acknowledgments

This work was financially supported by the Important National Science and Technology Specific Project of China (No. 2012ZX04010-081). The authors would also thank the support from State Key Laboratory of Material Processing and Die & Mould Technology and Analytical and Testing Center of Huazhong University of Science and Technology.

References

  1. 1.
    X. Cui, Y. Wu, X. Liu, Q. Zhao, G. Zhang, Mater. Des. 86, 397 (2015)CrossRefGoogle Scholar
  2. 2.
    M. Easton, D. Stjohn, Metall. Mater. Trans. A 30, 1613 (1999)CrossRefGoogle Scholar
  3. 3.
    P. Li, S. Liu, L. Zhang, X. Liu, Mater. Des. 47, 522 (2013)CrossRefGoogle Scholar
  4. 4.
    M.A. Easton, D.H. St. John, Acta Mater. 49, 1867 (2001)CrossRefGoogle Scholar
  5. 5.
    Y. Han, K. Li, J. Wang, D. Shu, B. Sun, Mater. Sci. Eng. A 405, 306 (2005)CrossRefGoogle Scholar
  6. 6.
    Z. Fang, Y. Yang, Y. Zhang, T. Qin, X.R. Zhou, G.E. Thompson, T. Pennycook, T. Hashimoto, Acta Mater. 84, 292 (2015)CrossRefGoogle Scholar
  7. 7.
    S.M. Jigajinni, K. Venkateswrlu, S.A. Kori, Met. Mater. Int. 19, 171 (2013)CrossRefGoogle Scholar
  8. 8.
    S.A. Kori, B.S. Murty, M. Chakraborty, Mater. Sci. Eng. A 280, 58 (2000)CrossRefGoogle Scholar
  9. 9.
    X.F. Liu, Z.Q. Wang, Z.G. Zhang, X.F. Bian, Mater. Sci. Eng. A 332, 70 (2002)CrossRefGoogle Scholar
  10. 10.
    K. Svynarenko, Y.B. Zhang, J.C. Jie, V. Kutsova, T.J. Li, Met. Mater. Int. 23, 788 (2017)CrossRefGoogle Scholar
  11. 11.
    K. Svynarenko, Y.B. Zhang, J.C. Jie, V. Kutsova, T.J. Li, Met. Mater. Int. 23, 994 (2017)CrossRefGoogle Scholar
  12. 12.
    A. Banerji, W. Reif, Mat. Trans. A 17, 2127 (1986)CrossRefGoogle Scholar
  13. 13.
    H.S. Choi, X.C. Li, J. Mater. Sci. 47, 3096 (2012)CrossRefGoogle Scholar
  14. 14.
    A. Mazahery, H. Abdizadeh, H.R. Baharvandi, Mater. Sci. Eng. A 518, 61 (2009)CrossRefGoogle Scholar
  15. 15.
    S. Fale, A. Likhite, J. Bhatt, Trans. Indian Inst. Met. 68, 291 (2015)CrossRefGoogle Scholar
  16. 16.
    M. Esturga, L.Y. Chen, H.S. Choi, X.C. Li, S. Jin, Appl. Mater. Interfaces 5, 8813 (2013)CrossRefGoogle Scholar
  17. 17.
    K. Wang, H.Y. Jiang, Q.D. Wang, B. Ye, W.J. Ding, J. Mater. Charact. 117, 41 (2016)CrossRefGoogle Scholar
  18. 18.
    G. Levi, W.D. Kaplan, M. Bamberger, Mater. Sci. Eng. A 326, 288 (2002)CrossRefGoogle Scholar
  19. 19.
    M.P.D. Cicco, L.S. Turng, X.C. Li, J.H. Perepezko, Mat. Trans. A 42, 2323 (2011)CrossRefGoogle Scholar
  20. 20.
    H. Su, W.L. Gao, Z.H. Feng, Z. Lu, Mater. Des. 36, 590 (2012)CrossRefGoogle Scholar
  21. 21.
    X. Li, Y. Yang, X. Cheng, J. Mater. Sci. 39, 3211 (2004)CrossRefGoogle Scholar
  22. 22.
    C.A. León, R.A.L. Drew, Compos. Part A Appl. S 33, 1429 (2002)CrossRefGoogle Scholar
  23. 23.
    J.P. Rocher, J.M. Quenisset, R. Naslain, J. Mater. Sci. 24, 2697 (1989)CrossRefGoogle Scholar
  24. 24.
    S. Cai, Y. Li, Y. Chen, X. Li, L. Xue, T. Nonferr, Metal. Soc. 23, 1890 (2013)Google Scholar
  25. 25.
    X. Li, Q. Cai, B. Zhao, Y. Xiao, B. Li, J. Alloys Compd. 675, 201 (2016)CrossRefGoogle Scholar
  26. 26.
    M. Easton, D. Stjohn, Metall. Mater. Trans. A 30, 1625 (1999)CrossRefGoogle Scholar
  27. 27.
    D. Zhang, D. Ying, Mater. Sci. Eng. A 301, 90 (2011)CrossRefGoogle Scholar
  28. 28.
    V.I. Nikitin, J.I.E. Wanqi, E.G. Kandalova, A.G. Makarenko, L. Yong, Scr. Mater. 42, 561 (2000)CrossRefGoogle Scholar
  29. 29.
    B.L. Smith, P.R. Gardner, E.H.C. Parker, J. Chem. Phys. 47, 1148 (1967)CrossRefGoogle Scholar
  30. 30.
    W.A. Zisma, Adv. Chem. 43, 1 (1964)CrossRefGoogle Scholar
  31. 31.
    M. Jamshidi, F.A. Taromi, J. Adhes. Sci. Technol. 21, 169 (2007)CrossRefGoogle Scholar
  32. 32.
    H. Kamusewitz, W. Possart, Appl. Phys. A Mater. 76, 899 (2003)CrossRefGoogle Scholar
  33. 33.
    S.K. Rhee, J. Am. Ceram. Soc. 53, 386 (1970)CrossRefGoogle Scholar
  34. 34.
    D. Batalu, G. Cosmeleata, A. Aloman, UPB Sci. Bull. 68, 77 (2006)Google Scholar
  35. 35.
    M.M. Guzowski, G.K. Sigworth, D.A. Sentner, Metall. Mater. Trans. A 18, 603 (1987)CrossRefGoogle Scholar
  36. 36.
    Z. Luo, Y. Song, S. Zhang, D.J. Miller, Metall. Mater. Trans. A 43, 281 (2012)CrossRefGoogle Scholar
  37. 37.
    T. Yano, H. Suematsu, T. Iseki, J. Mater. Sci. 23, 3362 (1988)CrossRefGoogle Scholar
  38. 38.
    B.L. Bramfitt, Metall. Trans. 1, 1987 (1970)CrossRefGoogle Scholar
  39. 39.
    M. Li, H. Zhai, Z. Huang, X. Liu, Y. Zhou, S. Li, C. Li, Mater. Sci. Eng. A 588, 335 (2013)CrossRefGoogle Scholar
  40. 40.
    B. Prabhu, C. Suryanarayana, L. An, R. Vaidyanathan, Mater. Sci. Eng. A 425, 192 (2006)CrossRefGoogle Scholar
  41. 41.
    R. Mitra, W.A. Chiou, M.E. Fine, J.R. Weertman, J. Mater. Res. 8, 2380 (1993)CrossRefGoogle Scholar
  42. 42.
    L. Yu, X. Liu, J. Mater. Process Tech. 182, 519 (2007)CrossRefGoogle Scholar
  43. 43.
    P.S. Mohanty, J.E. Gruzleski, Acta Mater. 43, 2001 (1995)CrossRefGoogle Scholar
  44. 44.
    T.E. Quested, J. Mater. Sci. Technol. 20, 1357 (2004)CrossRefGoogle Scholar
  45. 45.
    J. Qin, G. Chen, B. Wang, N. Hu, F. Han, Z. Du, J. Alloys Compd. 653, 32 (2015)CrossRefGoogle Scholar
  46. 46.
    N.L. Yue, L. Lu, M.O. Lai, Compos. Struct. 47, 691 (1999)CrossRefGoogle Scholar
  47. 47.
    T. Chen, R. Wang, Y. Ma, Y. Hao, Mater. Des. 34, 637 (2012)CrossRefGoogle Scholar
  48. 48.
    V.H. López, A. Scoles, A.R. Kennedy, Mater. Sci. Eng. A 356, 316 (2003)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Bingyi Zhao
    • 1
  • Qizhou Cai
    • 1
  • Xinwei Li
    • 1
  • Bing Li
    • 1
  • Jingfan Cheng
    • 1
  1. 1.State Key Laboratory of Materials Processing and Die & Mould TechnologyHuazhong University of Science and TechnologyWuhanChina

Personalised recommendations