Skip to main content
Log in

Mechanical Properties Analysis of 4340 Steel Specimen Heat Treated in Oven and Quenching in Three Different Fluids

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper proposes a statistical approach to analyze the mechanical properties of a standard test specimen, of cylindrical geometry and in steel 4340, with a diameter of 6 mm, heat-treated and quenched in three different fluids. Samples were evaluated in standard tensile test to access their characteristic quantities: hardness, modulus of elasticity, yield strength, tensile strength and ultimate deformation. The proposed approach is gradually being built (a) by a presentation of the experimental device, (b) a presentation of the experimental plan and the results of the mechanical tests, (c) anova analysis of variance and a representation of the output responses using the RSM response surface method, and (d) an analysis of the results and discussion. The feasibility and effectiveness of the proposed approach leads to a precise and reliable model capable of predicting the variation of mechanical properties, depending on the tempering temperature, the tempering time and the cooling capacity of the quenching medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

Ac3 :

Heating temperature at point A3 (°C)

T :

Oven temperature (°C)

ORT:

Oven residence time (min)

HTC:

Heat transfer coefficient (W m−2 K−1)

RaD :

Rayleigh number

Nu:

Nusselt number

Pr:

Prandtl number

k :

Thermal conductivity of the material (W m−1 K−1)

T s :

Surface temperature of the material (°C)

T :

Ambient air temperature (°C)

D :

Diameter of the specimen (mm)

ϑ :

Kinematic viscosity (m2 s−1)

α :

Thermal diffusivity (m2 s−1)

g :

Gravitational acceleration (m s−2)

T f :

Average temperature between Ts and T (°C)

Bi:

Biot number

h :

Thermal transfer coefficient (W m−2 K−1)

C p :

Specific heat (J kg−1 K−1)

ρ :

Density (kg m−3)

S :

Surface of the sample (m2)

V :

Volume of the sample (m3)

S y :

Offset yield strength (MPa)

S u :

Ultimate tensile strength (MPa)

E r :

Elongation at break (mm mm−1)

\({\mathcal{H}}\) :

Hardness, HRC (Rockwell C)

P :

Prediction polynomial

References

  1. W.-S. Lee, S. Tzay-Tian, Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. J. Mater. Process. Technol. 87(1), 198–206 (1999)

    Article  Google Scholar 

  2. T.V. Philip, T.J. McCaffrey, Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM Handbook, vol. 1 (ASM International, Materials Park, OH, 1990), pp. 430–448

    Google Scholar 

  3. R.K. Shiue, C. Chen, Laser transformation hardening of tempered 4340 steel. Metall. Mater. Trans. A 23(1), 163–170 (1992)

    Article  Google Scholar 

  4. M. Jahazi, B. Egbali, The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel. J. Mater. Process. Technol. 103, 276–279 (2000)

    Article  Google Scholar 

  5. J.J. Kai et al., The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690. Metall. Mater. Trans. A 20(10), 2057–2067 (1989)

    Article  Google Scholar 

  6. H. Cheng, H. Wang, X. Huang, Calculation of thermal stress field with non-linear surface heat-transfer coefficient during quenching. Met. Mater. 4(4), 601–604 (1998)

    Article  Google Scholar 

  7. Y.V. Murty, T.Z. Kattamis, R. Mehrabian, M.C. Flemings, Behavior of sulfide inclusions during thermomechanical processing of AISI 4340 steel. Metall. Mater. Trans. A 8, 1275–1282 (1977)

    Article  Google Scholar 

  8. ASTM E8/E8M. Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken (2009)

  9. K. Liu, X. Cao, X.-G. Chen, Tensile properties of Al–Cu 206 cast alloys with various iron contents. Metall. Mater. Trans. A 45(5), 2498–2507 (2014)

    Article  Google Scholar 

  10. D. Shahriari, M.H. Sadeghi, A. Akbarzadeh, M. Cheraghzadeh, The influence of heat treatment and hot deformation conditions on g′ precipitate dissolution of Nimonic 115 superalloy. Int. J. Adv. Manuf. Technol. 45, 841–850 (2009)

    Article  Google Scholar 

  11. J. Datsko, L. Hartwig, B. McClorv, On the tensile strength and hardness relation for metals. J. Mater. Eng. Perform. 10, 718–722 (2001)

    Article  Google Scholar 

  12. Phillip J. Ross, Taguchi Techniques for Quality Engineering (McGraw-Hill, London, 1988), p. 66

    Google Scholar 

  13. D.H. Kim, D.J. Kim, D.C. Ko, B.M. Kim, J.C. Choi, The application of the artificial neural network and taguchi method to process sequence design in metal forming processes. Met. Mater. 4(3), 548–553 (1998)

    Google Scholar 

  14. Stuart W. Churchill, Humbert H.S. Chu, Correlating equations for laminar and turbulent free convection from a vertical plate. Int. J. Heat Mass Transf. 18, 1323–1329 (1975)

    Article  Google Scholar 

  15. K. Dehnad, Quality Control, Robust Design, and the Taguchi Method (Springer, New York, 1989)

    Google Scholar 

  16. K. Palanikumar, L. Karunamoorthy, R. Karthikeyan, B. Latha, Optimization of machining parameters in turning GFRP composites using a carbide (K10) tool based on the Taguchi method with fuzzy logics. Met. Mater. Int. 12(6), 483–491 (2006)

    Article  Google Scholar 

  17. R.H. Myers, Response Surface Methodology (Allyn and Bacon, Boston, MA, 1971)

    Google Scholar 

  18. K. Dehghani, A. Nekahi, Interactive effects of aging parameters of AA6056. Met. Mater. Int. 18(5), 757–767 (2012)

    Article  Google Scholar 

  19. G.Y. Lai et al., The effect of austenitizing temperature on the microstructure and mechanical properties of as-quenched 4340 steel. Metall. Trans. 5(7), 1663–1670 (1974)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachid Fakir.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fakir, R., Barka, N. & Brousseau, J. Mechanical Properties Analysis of 4340 Steel Specimen Heat Treated in Oven and Quenching in Three Different Fluids. Met. Mater. Int. 24, 981–991 (2018). https://doi.org/10.1007/s12540-018-0120-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0120-9

Keywords

Navigation