Advertisement

Metals and Materials International

, Volume 24, Issue 5, pp 981–991 | Cite as

Mechanical Properties Analysis of 4340 Steel Specimen Heat Treated in Oven and Quenching in Three Different Fluids

  • Rachid Fakir
  • Noureddine Barka
  • Jean Brousseau
Article

Abstract

This paper proposes a statistical approach to analyze the mechanical properties of a standard test specimen, of cylindrical geometry and in steel 4340, with a diameter of 6 mm, heat-treated and quenched in three different fluids. Samples were evaluated in standard tensile test to access their characteristic quantities: hardness, modulus of elasticity, yield strength, tensile strength and ultimate deformation. The proposed approach is gradually being built (a) by a presentation of the experimental device, (b) a presentation of the experimental plan and the results of the mechanical tests, (c) anova analysis of variance and a representation of the output responses using the RSM response surface method, and (d) an analysis of the results and discussion. The feasibility and effectiveness of the proposed approach leads to a precise and reliable model capable of predicting the variation of mechanical properties, depending on the tempering temperature, the tempering time and the cooling capacity of the quenching medium.

Keywords

Heat treatment in an oven Tensile test AISI-4340 ANOVA RSM 

List of symbols

Ac3

Heating temperature at point A3 (°C)

T

Oven temperature (°C)

ORT

Oven residence time (min)

HTC

Heat transfer coefficient (W m−2 K−1)

RaD

Rayleigh number

Nu

Nusselt number

Pr

Prandtl number

k

Thermal conductivity of the material (W m−1 K−1)

Ts

Surface temperature of the material (°C)

T

Ambient air temperature (°C)

D

Diameter of the specimen (mm)

ϑ

Kinematic viscosity (m2 s−1)

α

Thermal diffusivity (m2 s−1)

g

Gravitational acceleration (m s−2)

Tf

Average temperature between Ts and T (°C)

Bi

Biot number

h

Thermal transfer coefficient (W m−2 K−1)

Cp

Specific heat (J kg−1 K−1)

ρ

Density (kg m−3)

S

Surface of the sample (m2)

V

Volume of the sample (m3)

Sy

Offset yield strength (MPa)

Su

Ultimate tensile strength (MPa)

Er

Elongation at break (mm mm−1)

\({\mathcal{H}}\)

Hardness, HRC (Rockwell C)

P

Prediction polynomial

References

  1. 1.
    W.-S. Lee, S. Tzay-Tian, Mechanical properties and microstructural features of AISI 4340 high-strength alloy steel under quenched and tempered conditions. J. Mater. Process. Technol. 87(1), 198–206 (1999)CrossRefGoogle Scholar
  2. 2.
    T.V. Philip, T.J. McCaffrey, Properties and Selection: Irons, Steels, and High-Performance Alloys, ASM Handbook, vol. 1 (ASM International, Materials Park, OH, 1990), pp. 430–448Google Scholar
  3. 3.
    R.K. Shiue, C. Chen, Laser transformation hardening of tempered 4340 steel. Metall. Mater. Trans. A 23(1), 163–170 (1992)CrossRefGoogle Scholar
  4. 4.
    M. Jahazi, B. Egbali, The influence of hot rolling parameters on the microstructure and mechanical properties of an ultra-high strength steel. J. Mater. Process. Technol. 103, 276–279 (2000)CrossRefGoogle Scholar
  5. 5.
    J.J. Kai et al., The effects of heat treatment on the chromium depletion, precipitate evolution, and corrosion resistance of INCONEL alloy 690. Metall. Mater. Trans. A 20(10), 2057–2067 (1989)CrossRefGoogle Scholar
  6. 6.
    H. Cheng, H. Wang, X. Huang, Calculation of thermal stress field with non-linear surface heat-transfer coefficient during quenching. Met. Mater. 4(4), 601–604 (1998)CrossRefGoogle Scholar
  7. 7.
    Y.V. Murty, T.Z. Kattamis, R. Mehrabian, M.C. Flemings, Behavior of sulfide inclusions during thermomechanical processing of AISI 4340 steel. Metall. Mater. Trans. A 8, 1275–1282 (1977)CrossRefGoogle Scholar
  8. 8.
    ASTM E8/E8M. Standard test methods for tension testing of metallic materials. ASTM International, West Conshohocken (2009)Google Scholar
  9. 9.
    K. Liu, X. Cao, X.-G. Chen, Tensile properties of Al–Cu 206 cast alloys with various iron contents. Metall. Mater. Trans. A 45(5), 2498–2507 (2014)CrossRefGoogle Scholar
  10. 10.
    D. Shahriari, M.H. Sadeghi, A. Akbarzadeh, M. Cheraghzadeh, The influence of heat treatment and hot deformation conditions on g′ precipitate dissolution of Nimonic 115 superalloy. Int. J. Adv. Manuf. Technol. 45, 841–850 (2009)CrossRefGoogle Scholar
  11. 11.
    J. Datsko, L. Hartwig, B. McClorv, On the tensile strength and hardness relation for metals. J. Mater. Eng. Perform. 10, 718–722 (2001)CrossRefGoogle Scholar
  12. 12.
    Phillip J. Ross, Taguchi Techniques for Quality Engineering (McGraw-Hill, London, 1988), p. 66Google Scholar
  13. 13.
    D.H. Kim, D.J. Kim, D.C. Ko, B.M. Kim, J.C. Choi, The application of the artificial neural network and taguchi method to process sequence design in metal forming processes. Met. Mater. 4(3), 548–553 (1998)Google Scholar
  14. 14.
    Stuart W. Churchill, Humbert H.S. Chu, Correlating equations for laminar and turbulent free convection from a vertical plate. Int. J. Heat Mass Transf. 18, 1323–1329 (1975)CrossRefGoogle Scholar
  15. 15.
    K. Dehnad, Quality Control, Robust Design, and the Taguchi Method (Springer, New York, 1989)Google Scholar
  16. 16.
    K. Palanikumar, L. Karunamoorthy, R. Karthikeyan, B. Latha, Optimization of machining parameters in turning GFRP composites using a carbide (K10) tool based on the Taguchi method with fuzzy logics. Met. Mater. Int. 12(6), 483–491 (2006)CrossRefGoogle Scholar
  17. 17.
    R.H. Myers, Response Surface Methodology (Allyn and Bacon, Boston, MA, 1971)Google Scholar
  18. 18.
    K. Dehghani, A. Nekahi, Interactive effects of aging parameters of AA6056. Met. Mater. Int. 18(5), 757–767 (2012)CrossRefGoogle Scholar
  19. 19.
    G.Y. Lai et al., The effect of austenitizing temperature on the microstructure and mechanical properties of as-quenched 4340 steel. Metall. Trans. 5(7), 1663–1670 (1974)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Rachid Fakir
    • 1
  • Noureddine Barka
    • 1
  • Jean Brousseau
    • 1
  1. 1.Mathematics, Computer Science and Engineering DepartmentUniversité du Québec à Rimouski, CanadaRimouskiCanada

Personalised recommendations