Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al–Cu–Ni Alloys
- 55 Downloads
Abstract
Al–Cu–Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al–5wt%Cu and Al–15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall–Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.
Keywords
Al–Cu–Ni alloys Directional solidification Microstructure Tensile and corrosion propertiesNotes
Acknowledgements
The authors acknowledge the financial support provided by CNPq—The Brazilian Research Council and FAPEAM–Amazonas State Research Support Foundation. The authors would like to thank the Brazilian Nanotechnology National Laboratory—LNNano for the use of its facilities.
References
- 1.A.K. Vasudeva, R.D. Doherty, Aluminum Alloys: Contemporary Research and Applications (Academic Press Inc, San Diego, 1989)Google Scholar
- 2.V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys (Elsevier Science, Amsterdam, 2007)Google Scholar
- 3.J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudiere, D. Zanghi, J. Non-Cryst. Solids 352, 4008 (2006)CrossRefGoogle Scholar
- 4.C.S. Tiwary, S. Kashyap, K. Chattopadhyay, Scr. Mater. 93, 20 (2014)CrossRefGoogle Scholar
- 5.X.W. Zhou, D.K. Ward, M.E. Foster, J. Alloys Compd. 680, 752 (2016)CrossRefGoogle Scholar
- 6.J.M.V. Quaresma, C.A. Santos, A. Garcia, Metall. Mater. Trans. A 31, 3167 (2000)CrossRefGoogle Scholar
- 7.E. Çadırlı, Met. Mater. Int. 19, 411 (2013)CrossRefGoogle Scholar
- 8.M.V. Canté, J.E. Spinelli, N. Cheung, A. Garcia, Met. Mater. Int. 16, 39 (2010)CrossRefGoogle Scholar
- 9.Q. Dong, J. Zhang, J. Dong, Y. Dai, F. Bian, H. Xie, Y. Lu, B. Sun, Mater. Lett. 65, 3295 (2011)CrossRefGoogle Scholar
- 10.M. Gündüz, E. Çadırlı, Mat. Sci. Eng. A Struct. 327, 167 (2002)CrossRefGoogle Scholar
- 11.L. Abou-Khalil, G. Salloum-Abou-Jaoude, G. Reinhart, C. Pickmann, G. Zimmermann, H. Nguyen-Thi, Acta Mater. 110, 44 (2016)CrossRefGoogle Scholar
- 12.J.T. Kim, S.W. Lee, S.H. Hong, H.J. Park, J. Park, N. Lee, Y. Seo, W. Wang, J.M. Park, K.B. Kim, Mater. Des. 92, 1038 (2016)CrossRefGoogle Scholar
- 13.S.W. Lee, J.T. Kim, S.H. Hong, H.J. Park, J.Y. Park, N.S. Lee, Y. Seo, J.Y. Suh, J. Eckert, D.H. Kim, J.M. Park, K.B. Kim, Sci. Rep. 4, 1 (2014)Google Scholar
- 14.C.-H. Wang, S.-W. Chen, C.-H. Chang, J.-C. Wu, Metall. Mater. Trans. A 34, 199 (2003)CrossRefGoogle Scholar
- 15.V. Raghavan, J. Phase Equilib. Diffus. 27, 389 (2006)Google Scholar
- 16.C.-L. Chen, R.C. Thomson, J. Alloys Compd. 490, 293 (2010)CrossRefGoogle Scholar
- 17.C.-L. Chen, R.C. Thomson, Intermetallics 18, 1750 (2010)CrossRefGoogle Scholar
- 18.G. Mrówka-Nowotnik, Recent Trends in Processing and Degradation of Aluminium Alloys, ed. Z. Ahmad, Intech. https://www.intechopen.com/books/recent-trends-in-processing-and-degradation-of-aluminium-alloys/intermetallic-phases-examination-in-cast-alsi5cu1mg-and-alcu4ni2mg2-aluminium-alloys-in-as-cast-and- (2011)
- 19.C.-L. Chen, A. Richter, R.C. Thomson, Intermetallics 18, 499 (2010)CrossRefGoogle Scholar
- 20.Z. Zhang, E. Akiyama, Y. Watanabe, Y. Katada, K. Tsuzaki, Corros. Sci. 49, 2962 (2007)CrossRefGoogle Scholar
- 21.M.A. Amin, S.S. Abd El Rehim, S.O. Moussa, A.S. Ellithy, Electrochim. Acta 53, 5644 (2008)CrossRefGoogle Scholar
- 22.C. Brito, T. Vida, E. Freitas, N. Cheung, J.E. Spinelli, A. Garcia, J. Alloys Compd. 673, 220 (2016)CrossRefGoogle Scholar
- 23.W.R. Osório, L.C. Peixoto, M.V. Canté, A. Garcia, Mater. Des. 31, 4485 (2010)CrossRefGoogle Scholar
- 24.W.L.R. Santos, C. Brito, J.M.V. Quaresma, J.E. Spinelli, A. Garcia, Mater. Sci. Eng. B Adv. 182, 29 (2014)CrossRefGoogle Scholar
- 25.T.A. Costa, E.S. Freitas, M. Dias, C. Brito, N. Cheung, A. Garcia, J. Alloys Compd. 653, 243 (2015)CrossRefGoogle Scholar
- 26.O.L. Rocha, C.A. Siqueira, A. Garcia, Metall. Mater. Trans. A 34, 995 (2003)CrossRefGoogle Scholar
- 27.M.V. Canté, K.S. Cruz, J.E. Spinelli, N. Cheung, A. Garcia, Mater. Lett. 61, 2135 (2007)CrossRefGoogle Scholar
- 28.J. Grandfield, D.G. Eskin, I. Bainbridge, Direct-Chill Casting of Light Alloys: Science and Technology (Wiley, New York, 2013), pp. 144–254CrossRefGoogle Scholar
- 29.W.R. Osório, J.E. Spinelli, I.L. Ferreira, A. Garcia, Eletrochim. Acta. 52, 3265 (2007)CrossRefGoogle Scholar
- 30.I.L. Ferreira, A. Garcia, B. Nestler, Scr. Mater. 50, 407–411 (2004)CrossRefGoogle Scholar
- 31.M.V. Canté, J.E. Spinelli, I.L. Ferreira, N. Cheung, A. Garcia, Metall. Mater. Trans. A 39, 1712 (2008)CrossRefGoogle Scholar
- 32.E. Karaköse, M. Keskin, Mater. Des. 32, 4970 (2011)CrossRefGoogle Scholar
- 33.M. Warmuzek, J. Alloys Compd. 604, 245 (2014)CrossRefGoogle Scholar
- 34.Inorganic Crystal Structure Database, Crystallographic Information Framework (CIF) files. http://www.fiz-karlsruhe.de/icsd.html (2017)
- 35.W. Kurz, D.J. Fisher, Fundamentals of Solidification (Trans. Tech. Publications, Zurich, 1998)Google Scholar
- 36.C. Brito, T.A. Costa, T.A. Vida, F. Bertelli, N. Cheung, J.E. Spinelli, A. Garcia, Metall. Mater. Trans. A 46, 3342 (2015)CrossRefGoogle Scholar
- 37.O.L. Rocha, C.A. Siqueira, A. Garcia, Mat. Sci. Eng. A Struct. 361, 111 (2003)CrossRefGoogle Scholar
- 38.D.J. Moutinho, L.G. Gomes, O.L. Rocha, I.L. Ferreira, A. Garcia, Mater. Sci. Forum 730, 883 (2013)Google Scholar
- 39.B.L. Silva, A. Garcia, J.E. Spinelli, Mater. Charact. 114, 30 (2016)CrossRefGoogle Scholar
- 40.R.N. Duarte, J.D. Faria, C. Brito, N.C. Veríssimo, N. Cheung, A. Garcia, Int. J. Mod. Phys. B 29, 1550261-1 (2015)Google Scholar
- 41.L.F. Gomes, B.L. Silva, A. Garcia, J.E. Spinelli, Metall. Mater. Trans. A 48, 1841 (2017)CrossRefGoogle Scholar
- 42.J.D. Faria, C.C. Brito, T.A.P.S. Costa, N.C. Verissimo, W.L.R. Santos, J.M.S. Dias Filho, A. Garcia, N. Cheung, Materia-Rio de Janeiro 20, 992 (2015)CrossRefGoogle Scholar
- 43.R. Ambat, A.J. Davenport, G.M. Scamans, A. Afseth, Corros. Sci. 48, 3455–3471 (2006)CrossRefGoogle Scholar
- 44.E. Ghali, Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing, vol. 12 (Wiley, Hoboken, 2010), p. 193CrossRefGoogle Scholar
- 45.N. Sato, Electrochim. Acta 16, 1683 (1971)CrossRefGoogle Scholar
- 46.G.T. Burstein, P.C. Pistorius, S.P. Mattin, Corros. Sci. 35, 57 (1993)CrossRefGoogle Scholar
- 47.G. Meng, L. Wei, T. Zhang, Y. Shao, F. Wang, C. Dong, X. Li, Corros. Sci. 51, 2151 (2009)CrossRefGoogle Scholar
- 48.W.R. Osório, J.E. Spinelli, A.P. Boeira, C.M.A. Freire, A. Garcia, Microsc. Res. Tech. 70, 928 (2007)CrossRefGoogle Scholar
- 49.W.R. Osório, J.E. Spinelli, C.M.A. Freire, M.B. Cardona, A. Garcia, J. Alloys Compd. 443, 87 (2007)CrossRefGoogle Scholar
- 50.W.R. Osório, L.C. Peixoto, M.V. Canté, A. Garcia, Electrochim. Acta 55, 4078 (2010)CrossRefGoogle Scholar
- 51.W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Electrochim. Acta 69, 371 (2012)CrossRefGoogle Scholar
- 52.W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Electrochim. Acta 56, 8891 (2011)CrossRefGoogle Scholar