Skip to main content
Log in

Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al–Cu–Ni Alloys

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Al–Cu–Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al–5wt%Cu and Al–15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall–Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. A.K. Vasudeva, R.D. Doherty, Aluminum Alloys: Contemporary Research and Applications (Academic Press Inc, San Diego, 1989)

    Google Scholar 

  2. V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys (Elsevier Science, Amsterdam, 2007)

    Google Scholar 

  3. J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudiere, D. Zanghi, J. Non-Cryst. Solids 352, 4008 (2006)

    Article  Google Scholar 

  4. C.S. Tiwary, S. Kashyap, K. Chattopadhyay, Scr. Mater. 93, 20 (2014)

    Article  Google Scholar 

  5. X.W. Zhou, D.K. Ward, M.E. Foster, J. Alloys Compd. 680, 752 (2016)

    Article  Google Scholar 

  6. J.M.V. Quaresma, C.A. Santos, A. Garcia, Metall. Mater. Trans. A 31, 3167 (2000)

    Article  Google Scholar 

  7. E. Çadırlı, Met. Mater. Int. 19, 411 (2013)

    Article  Google Scholar 

  8. M.V. Canté, J.E. Spinelli, N. Cheung, A. Garcia, Met. Mater. Int. 16, 39 (2010)

    Article  Google Scholar 

  9. Q. Dong, J. Zhang, J. Dong, Y. Dai, F. Bian, H. Xie, Y. Lu, B. Sun, Mater. Lett. 65, 3295 (2011)

    Article  Google Scholar 

  10. M. Gündüz, E. Çadırlı, Mat. Sci. Eng. A Struct. 327, 167 (2002)

    Article  Google Scholar 

  11. L. Abou-Khalil, G. Salloum-Abou-Jaoude, G. Reinhart, C. Pickmann, G. Zimmermann, H. Nguyen-Thi, Acta Mater. 110, 44 (2016)

    Article  Google Scholar 

  12. J.T. Kim, S.W. Lee, S.H. Hong, H.J. Park, J. Park, N. Lee, Y. Seo, W. Wang, J.M. Park, K.B. Kim, Mater. Des. 92, 1038 (2016)

    Article  Google Scholar 

  13. S.W. Lee, J.T. Kim, S.H. Hong, H.J. Park, J.Y. Park, N.S. Lee, Y. Seo, J.Y. Suh, J. Eckert, D.H. Kim, J.M. Park, K.B. Kim, Sci. Rep. 4, 1 (2014)

    Google Scholar 

  14. C.-H. Wang, S.-W. Chen, C.-H. Chang, J.-C. Wu, Metall. Mater. Trans. A 34, 199 (2003)

    Article  Google Scholar 

  15. V. Raghavan, J. Phase Equilib. Diffus. 27, 389 (2006)

    Google Scholar 

  16. C.-L. Chen, R.C. Thomson, J. Alloys Compd. 490, 293 (2010)

    Article  Google Scholar 

  17. C.-L. Chen, R.C. Thomson, Intermetallics 18, 1750 (2010)

    Article  Google Scholar 

  18. G. Mrówka-Nowotnik, Recent Trends in Processing and Degradation of Aluminium Alloys, ed. Z. Ahmad, Intech. https://www.intechopen.com/books/recent-trends-in-processing-and-degradation-of-aluminium-alloys/intermetallic-phases-examination-in-cast-alsi5cu1mg-and-alcu4ni2mg2-aluminium-alloys-in-as-cast-and- (2011)

  19. C.-L. Chen, A. Richter, R.C. Thomson, Intermetallics 18, 499 (2010)

    Article  Google Scholar 

  20. Z. Zhang, E. Akiyama, Y. Watanabe, Y. Katada, K. Tsuzaki, Corros. Sci. 49, 2962 (2007)

    Article  Google Scholar 

  21. M.A. Amin, S.S. Abd El Rehim, S.O. Moussa, A.S. Ellithy, Electrochim. Acta 53, 5644 (2008)

    Article  Google Scholar 

  22. C. Brito, T. Vida, E. Freitas, N. Cheung, J.E. Spinelli, A. Garcia, J. Alloys Compd. 673, 220 (2016)

    Article  Google Scholar 

  23. W.R. Osório, L.C. Peixoto, M.V. Canté, A. Garcia, Mater. Des. 31, 4485 (2010)

    Article  Google Scholar 

  24. W.L.R. Santos, C. Brito, J.M.V. Quaresma, J.E. Spinelli, A. Garcia, Mater. Sci. Eng. B Adv. 182, 29 (2014)

    Article  Google Scholar 

  25. T.A. Costa, E.S. Freitas, M. Dias, C. Brito, N. Cheung, A. Garcia, J. Alloys Compd. 653, 243 (2015)

    Article  Google Scholar 

  26. O.L. Rocha, C.A. Siqueira, A. Garcia, Metall. Mater. Trans. A 34, 995 (2003)

    Article  Google Scholar 

  27. M.V. Canté, K.S. Cruz, J.E. Spinelli, N. Cheung, A. Garcia, Mater. Lett. 61, 2135 (2007)

    Article  Google Scholar 

  28. J. Grandfield, D.G. Eskin, I. Bainbridge, Direct-Chill Casting of Light Alloys: Science and Technology (Wiley, New York, 2013), pp. 144–254

    Book  Google Scholar 

  29. W.R. Osório, J.E. Spinelli, I.L. Ferreira, A. Garcia, Eletrochim. Acta. 52, 3265 (2007)

    Article  Google Scholar 

  30. I.L. Ferreira, A. Garcia, B. Nestler, Scr. Mater. 50, 407–411 (2004)

    Article  Google Scholar 

  31. M.V. Canté, J.E. Spinelli, I.L. Ferreira, N. Cheung, A. Garcia, Metall. Mater. Trans. A 39, 1712 (2008)

    Article  Google Scholar 

  32. E. Karaköse, M. Keskin, Mater. Des. 32, 4970 (2011)

    Article  Google Scholar 

  33. M. Warmuzek, J. Alloys Compd. 604, 245 (2014)

    Article  Google Scholar 

  34. Inorganic Crystal Structure Database, Crystallographic Information Framework (CIF) files. http://www.fiz-karlsruhe.de/icsd.html (2017)

  35. W. Kurz, D.J. Fisher, Fundamentals of Solidification (Trans. Tech. Publications, Zurich, 1998)

    Google Scholar 

  36. C. Brito, T.A. Costa, T.A. Vida, F. Bertelli, N. Cheung, J.E. Spinelli, A. Garcia, Metall. Mater. Trans. A 46, 3342 (2015)

    Article  Google Scholar 

  37. O.L. Rocha, C.A. Siqueira, A. Garcia, Mat. Sci. Eng. A Struct. 361, 111 (2003)

    Article  Google Scholar 

  38. D.J. Moutinho, L.G. Gomes, O.L. Rocha, I.L. Ferreira, A. Garcia, Mater. Sci. Forum 730, 883 (2013)

    Google Scholar 

  39. B.L. Silva, A. Garcia, J.E. Spinelli, Mater. Charact. 114, 30 (2016)

    Article  Google Scholar 

  40. R.N. Duarte, J.D. Faria, C. Brito, N.C. Veríssimo, N. Cheung, A. Garcia, Int. J. Mod. Phys. B 29, 1550261-1 (2015)

    Google Scholar 

  41. L.F. Gomes, B.L. Silva, A. Garcia, J.E. Spinelli, Metall. Mater. Trans. A 48, 1841 (2017)

    Article  Google Scholar 

  42. J.D. Faria, C.C. Brito, T.A.P.S. Costa, N.C. Verissimo, W.L.R. Santos, J.M.S. Dias Filho, A. Garcia, N. Cheung, Materia-Rio de Janeiro 20, 992 (2015)

    Article  Google Scholar 

  43. R. Ambat, A.J. Davenport, G.M. Scamans, A. Afseth, Corros. Sci. 48, 3455–3471 (2006)

    Article  Google Scholar 

  44. E. Ghali, Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing, vol. 12 (Wiley, Hoboken, 2010), p. 193

    Book  Google Scholar 

  45. N. Sato, Electrochim. Acta 16, 1683 (1971)

    Article  Google Scholar 

  46. G.T. Burstein, P.C. Pistorius, S.P. Mattin, Corros. Sci. 35, 57 (1993)

    Article  Google Scholar 

  47. G. Meng, L. Wei, T. Zhang, Y. Shao, F. Wang, C. Dong, X. Li, Corros. Sci. 51, 2151 (2009)

    Article  Google Scholar 

  48. W.R. Osório, J.E. Spinelli, A.P. Boeira, C.M.A. Freire, A. Garcia, Microsc. Res. Tech. 70, 928 (2007)

    Article  Google Scholar 

  49. W.R. Osório, J.E. Spinelli, C.M.A. Freire, M.B. Cardona, A. Garcia, J. Alloys Compd. 443, 87 (2007)

    Article  Google Scholar 

  50. W.R. Osório, L.C. Peixoto, M.V. Canté, A. Garcia, Electrochim. Acta 55, 4078 (2010)

    Article  Google Scholar 

  51. W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Electrochim. Acta 69, 371 (2012)

    Article  Google Scholar 

  52. W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Electrochim. Acta 56, 8891 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the financial support provided by CNPq—The Brazilian Research Council and FAPEAM–Amazonas State Research Support Foundation. The authors would like to thank the Brazilian Nanotechnology National Laboratory—LNNano for the use of its facilities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Noé Cheung.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodrigues, A.V., Lima, T.S., Vida, T.A. et al. Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al–Cu–Ni Alloys. Met. Mater. Int. 24, 1058–1076 (2018). https://doi.org/10.1007/s12540-018-0116-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0116-5

Keywords

Navigation