Advertisement

Metals and Materials International

, Volume 24, Issue 5, pp 1058–1076 | Cite as

Microstructure and Tensile/Corrosion Properties Relationships of Directionally Solidified Al–Cu–Ni Alloys

  • Adilson V. Rodrigues
  • Thiago S. Lima
  • Talita A. Vida
  • Crystopher Brito
  • Amauri Garcia
  • Noé Cheung
Article
  • 180 Downloads

Abstract

Al–Cu–Ni alloys are of scientific and technological interest due to high strength/high temperature applications, based on the reinforcement originated from the interaction between the Al-rich phase and intermetallic composites. The nature, morphology, size, volume fraction and dispersion of IMCs particles throughout the Al-rich matrix are important factors determining the resulting mechanical and chemical properties. The present work aims to evaluate the effect of the addition of 1wt%Ni into Al–5wt%Cu and Al–15wt%Cu alloys on the solidification rate, macrosegregation, microstructure features and the interrelations of such characteristics on tensile and corrosion properties. A directional solidification technique is used permitting a wide range of microstructural scales to be examined. Experimental growth laws relating the primary and secondary dendritic spacings to growth rate and solidification cooling rate are proposed, and Hall–Petch type equations are derived relating the ultimate tensile strength and elongation to the primary dendritic spacing. Considering a compromise between ultimate tensile strength and corrosion resistance of the examined alloys samples from both alloys castings it is shown that the samples having more refined microstructures are associated with the highest values of such properties.

Keywords

Al–Cu–Ni alloys Directional solidification Microstructure Tensile and corrosion properties 

Notes

Acknowledgements

The authors acknowledge the financial support provided by CNPq—The Brazilian Research Council and FAPEAM–Amazonas State Research Support Foundation. The authors would like to thank the Brazilian Nanotechnology National Laboratory—LNNano for the use of its facilities.

References

  1. 1.
    A.K. Vasudeva, R.D. Doherty, Aluminum Alloys: Contemporary Research and Applications (Academic Press Inc, San Diego, 1989)Google Scholar
  2. 2.
    V.S. Zolotorevsky, N.A. Belov, M.V. Glazoff, Casting Aluminum Alloys (Elsevier Science, Amsterdam, 2007)Google Scholar
  3. 3.
    J. Brillo, A. Bytchkov, I. Egry, L. Hennet, G. Mathiak, I. Pozdnyakova, D.L. Price, D. Thiaudiere, D. Zanghi, J. Non-Cryst. Solids 352, 4008 (2006)CrossRefGoogle Scholar
  4. 4.
    C.S. Tiwary, S. Kashyap, K. Chattopadhyay, Scr. Mater. 93, 20 (2014)CrossRefGoogle Scholar
  5. 5.
    X.W. Zhou, D.K. Ward, M.E. Foster, J. Alloys Compd. 680, 752 (2016)CrossRefGoogle Scholar
  6. 6.
    J.M.V. Quaresma, C.A. Santos, A. Garcia, Metall. Mater. Trans. A 31, 3167 (2000)CrossRefGoogle Scholar
  7. 7.
    E. Çadırlı, Met. Mater. Int. 19, 411 (2013)CrossRefGoogle Scholar
  8. 8.
    M.V. Canté, J.E. Spinelli, N. Cheung, A. Garcia, Met. Mater. Int. 16, 39 (2010)CrossRefGoogle Scholar
  9. 9.
    Q. Dong, J. Zhang, J. Dong, Y. Dai, F. Bian, H. Xie, Y. Lu, B. Sun, Mater. Lett. 65, 3295 (2011)CrossRefGoogle Scholar
  10. 10.
    M. Gündüz, E. Çadırlı, Mat. Sci. Eng. A Struct. 327, 167 (2002)CrossRefGoogle Scholar
  11. 11.
    L. Abou-Khalil, G. Salloum-Abou-Jaoude, G. Reinhart, C. Pickmann, G. Zimmermann, H. Nguyen-Thi, Acta Mater. 110, 44 (2016)CrossRefGoogle Scholar
  12. 12.
    J.T. Kim, S.W. Lee, S.H. Hong, H.J. Park, J. Park, N. Lee, Y. Seo, W. Wang, J.M. Park, K.B. Kim, Mater. Des. 92, 1038 (2016)CrossRefGoogle Scholar
  13. 13.
    S.W. Lee, J.T. Kim, S.H. Hong, H.J. Park, J.Y. Park, N.S. Lee, Y. Seo, J.Y. Suh, J. Eckert, D.H. Kim, J.M. Park, K.B. Kim, Sci. Rep. 4, 1 (2014)Google Scholar
  14. 14.
    C.-H. Wang, S.-W. Chen, C.-H. Chang, J.-C. Wu, Metall. Mater. Trans. A 34, 199 (2003)CrossRefGoogle Scholar
  15. 15.
    V. Raghavan, J. Phase Equilib. Diffus. 27, 389 (2006)Google Scholar
  16. 16.
    C.-L. Chen, R.C. Thomson, J. Alloys Compd. 490, 293 (2010)CrossRefGoogle Scholar
  17. 17.
    C.-L. Chen, R.C. Thomson, Intermetallics 18, 1750 (2010)CrossRefGoogle Scholar
  18. 18.
  19. 19.
    C.-L. Chen, A. Richter, R.C. Thomson, Intermetallics 18, 499 (2010)CrossRefGoogle Scholar
  20. 20.
    Z. Zhang, E. Akiyama, Y. Watanabe, Y. Katada, K. Tsuzaki, Corros. Sci. 49, 2962 (2007)CrossRefGoogle Scholar
  21. 21.
    M.A. Amin, S.S. Abd El Rehim, S.O. Moussa, A.S. Ellithy, Electrochim. Acta 53, 5644 (2008)CrossRefGoogle Scholar
  22. 22.
    C. Brito, T. Vida, E. Freitas, N. Cheung, J.E. Spinelli, A. Garcia, J. Alloys Compd. 673, 220 (2016)CrossRefGoogle Scholar
  23. 23.
    W.R. Osório, L.C. Peixoto, M.V. Canté, A. Garcia, Mater. Des. 31, 4485 (2010)CrossRefGoogle Scholar
  24. 24.
    W.L.R. Santos, C. Brito, J.M.V. Quaresma, J.E. Spinelli, A. Garcia, Mater. Sci. Eng. B Adv. 182, 29 (2014)CrossRefGoogle Scholar
  25. 25.
    T.A. Costa, E.S. Freitas, M. Dias, C. Brito, N. Cheung, A. Garcia, J. Alloys Compd. 653, 243 (2015)CrossRefGoogle Scholar
  26. 26.
    O.L. Rocha, C.A. Siqueira, A. Garcia, Metall. Mater. Trans. A 34, 995 (2003)CrossRefGoogle Scholar
  27. 27.
    M.V. Canté, K.S. Cruz, J.E. Spinelli, N. Cheung, A. Garcia, Mater. Lett. 61, 2135 (2007)CrossRefGoogle Scholar
  28. 28.
    J. Grandfield, D.G. Eskin, I. Bainbridge, Direct-Chill Casting of Light Alloys: Science and Technology (Wiley, New York, 2013), pp. 144–254CrossRefGoogle Scholar
  29. 29.
    W.R. Osório, J.E. Spinelli, I.L. Ferreira, A. Garcia, Eletrochim. Acta. 52, 3265 (2007)CrossRefGoogle Scholar
  30. 30.
    I.L. Ferreira, A. Garcia, B. Nestler, Scr. Mater. 50, 407–411 (2004)CrossRefGoogle Scholar
  31. 31.
    M.V. Canté, J.E. Spinelli, I.L. Ferreira, N. Cheung, A. Garcia, Metall. Mater. Trans. A 39, 1712 (2008)CrossRefGoogle Scholar
  32. 32.
    E. Karaköse, M. Keskin, Mater. Des. 32, 4970 (2011)CrossRefGoogle Scholar
  33. 33.
    M. Warmuzek, J. Alloys Compd. 604, 245 (2014)CrossRefGoogle Scholar
  34. 34.
    Inorganic Crystal Structure Database, Crystallographic Information Framework (CIF) files. http://www.fiz-karlsruhe.de/icsd.html (2017)
  35. 35.
    W. Kurz, D.J. Fisher, Fundamentals of Solidification (Trans. Tech. Publications, Zurich, 1998)Google Scholar
  36. 36.
    C. Brito, T.A. Costa, T.A. Vida, F. Bertelli, N. Cheung, J.E. Spinelli, A. Garcia, Metall. Mater. Trans. A 46, 3342 (2015)CrossRefGoogle Scholar
  37. 37.
    O.L. Rocha, C.A. Siqueira, A. Garcia, Mat. Sci. Eng. A Struct. 361, 111 (2003)CrossRefGoogle Scholar
  38. 38.
    D.J. Moutinho, L.G. Gomes, O.L. Rocha, I.L. Ferreira, A. Garcia, Mater. Sci. Forum 730, 883 (2013)Google Scholar
  39. 39.
    B.L. Silva, A. Garcia, J.E. Spinelli, Mater. Charact. 114, 30 (2016)CrossRefGoogle Scholar
  40. 40.
    R.N. Duarte, J.D. Faria, C. Brito, N.C. Veríssimo, N. Cheung, A. Garcia, Int. J. Mod. Phys. B 29, 1550261-1 (2015)Google Scholar
  41. 41.
    L.F. Gomes, B.L. Silva, A. Garcia, J.E. Spinelli, Metall. Mater. Trans. A 48, 1841 (2017)CrossRefGoogle Scholar
  42. 42.
    J.D. Faria, C.C. Brito, T.A.P.S. Costa, N.C. Verissimo, W.L.R. Santos, J.M.S. Dias Filho, A. Garcia, N. Cheung, Materia-Rio de Janeiro 20, 992 (2015)CrossRefGoogle Scholar
  43. 43.
    R. Ambat, A.J. Davenport, G.M. Scamans, A. Afseth, Corros. Sci. 48, 3455–3471 (2006)CrossRefGoogle Scholar
  44. 44.
    E. Ghali, Corrosion Resistance of Aluminum and Magnesium Alloys: Understanding, Performance, and Testing, vol. 12 (Wiley, Hoboken, 2010), p. 193CrossRefGoogle Scholar
  45. 45.
    N. Sato, Electrochim. Acta 16, 1683 (1971)CrossRefGoogle Scholar
  46. 46.
    G.T. Burstein, P.C. Pistorius, S.P. Mattin, Corros. Sci. 35, 57 (1993)CrossRefGoogle Scholar
  47. 47.
    G. Meng, L. Wei, T. Zhang, Y. Shao, F. Wang, C. Dong, X. Li, Corros. Sci. 51, 2151 (2009)CrossRefGoogle Scholar
  48. 48.
    W.R. Osório, J.E. Spinelli, A.P. Boeira, C.M.A. Freire, A. Garcia, Microsc. Res. Tech. 70, 928 (2007)CrossRefGoogle Scholar
  49. 49.
    W.R. Osório, J.E. Spinelli, C.M.A. Freire, M.B. Cardona, A. Garcia, J. Alloys Compd. 443, 87 (2007)CrossRefGoogle Scholar
  50. 50.
    W.R. Osório, L.C. Peixoto, M.V. Canté, A. Garcia, Electrochim. Acta 55, 4078 (2010)CrossRefGoogle Scholar
  51. 51.
    W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Electrochim. Acta 69, 371 (2012)CrossRefGoogle Scholar
  52. 52.
    W.R. Osório, J.E. Spinelli, C.R.M. Afonso, L.C. Peixoto, A. Garcia, Electrochim. Acta 56, 8891 (2011)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Manufacturing and Materials EngineeringUniversity of Campinas - UNICAMPCampinasBrazil
  2. 2.Federal Institute of Education, Science and Technology of São Paulo - IFSPBragança PaulistaBrazil
  3. 3.Marine InstituteFederal University of São Paulo - UNIFESPSantosBrazil

Personalised recommendations