Metals and Materials International

, Volume 24, Issue 5, pp 926–933 | Cite as

Microstructure Evolution During Solidification of Cu–Zr–Ti Alloy Forming B2 Phase Particles Embedded in a Glassy Matrix

  • Byoung Jin Kim
  • Young Su Yun
  • Won Tae Kim
  • Do Hyang Kim


Microstructural evolution during injection casting Cu50Zr50−xTix (x = 0–8) alloys has been investigated using X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy and transmission electron microscopy. Cubic CuZr(Ti) B2 phase is competing against the glass transition during solidification for all the alloys and the primary B2 phase has transformed into the martensitic phase for x < 6 alloys during cooling after solidification. The formation of spherical morphology and spatially inhomogeneous distribution of B2 phase in a glassy matrix can be rationalized in terms of reduced interface kinetics of solid/liquid interface and polymorphic nature of the primary solidification taking place without solute partition. The partial replacement of Zr with Ti improves not only glass forming ability but also suppresses the martensitic transformation of B2 phase, enabling the fabrication of BMG composites consisted of the B2 phase embedded in a CuZr(Ti) glass matrix. However, due to local cooling rate change during solidification, development of non-uniform microstructure in the BMG composites seems to be inevitable, which may be an obstacle in future application of the BMG composites.


Bulk metallic glass composites Solidification CuZr B2 phase 



This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MEST) (2016R1A2B2013838). B.J. Kim acknowledges the support from the six times Stage of Brain Korea 21 Project in 2011. W.T. Kim acknowledges the support from Cheongju University through 2017 sabbatical leave program.


  1. 1.
    W. Zhang, A. Inoue, J. Mater. Res. 21, 234 (2006)CrossRefGoogle Scholar
  2. 2.
    W. Yang, F. Liu, H. Liu, H.F. Wang, Z. Chen, G.C. Yang, J. Alloys Compd. 484, 702 (2009)CrossRefGoogle Scholar
  3. 3.
    H. Men, S.J. Pang, T. Zhang, Mater. Sci. Eng. A Struct. 408, 326 (2005)CrossRefGoogle Scholar
  4. 4.
    J.S. Wang, L.J. Cao, J.H. Wang, H.Y. Sun, S.Y. Huang, Q.G. Xue, Adv. Mater. Res. 194–196, 1242 (2011)Google Scholar
  5. 5.
    D. Wang, Y. Li, B.B. Sun, M.L. Sui, K. Lu, E. Ma, Appl. Phys. Lett. 84, 4029 (2004)CrossRefGoogle Scholar
  6. 6.
    P. Yu, H.Y. Bai, W.H. Wang, J. Mater. Res. 21, 1674 (2006)CrossRefGoogle Scholar
  7. 7.
    S. Pauly, J. Das, J. Bednarcik, N. Mattern, K.B. Kim, D.H. Kim, J. Eckert, Scr. Mater. 60, 431 (2009)CrossRefGoogle Scholar
  8. 8.
    Y. Wu, Y. Xiao, G. Chen, C.T. Liu, Z. Lu, Adv. Mater. 22, 2770 (2010)CrossRefGoogle Scholar
  9. 9.
    Z. Liu, R. Li, G. Liu, K. Song, S. Pauly, T. Zhang, J. Eckert, AIP Adv. 2, 032176 (2012)CrossRefGoogle Scholar
  10. 10.
    K.J. Zeng, M. Hämäläinen, H.L. Lukas, J. Phase Equilibria 15, 577 (1994)CrossRefGoogle Scholar
  11. 11.
    X. Cui, F.Q. Zu, Z.Z. Wang, Z.Y. Huang, X.Y. Li, L.F. Wang, Intermetallics 36, 21 (2013)CrossRefGoogle Scholar
  12. 12.
    W. Zhang, F. Jia, Q. Zhang, A. Inoue, Mater. Sci. Eng A Struct. 459, 330 (2007)CrossRefGoogle Scholar
  13. 13.
    S. Pauly, S. Gorantla, G. Wang, U. Kühn, J. Eckert, Nat. Mater. 9, 473 (2010)CrossRefGoogle Scholar
  14. 14.
    B.J. Kim, Y.S. Yun, W.T. Kim, D.H. Kim, Met. Mater. Int. 22, 1026 (2016)CrossRefGoogle Scholar
  15. 15.
    M.A. Turchanin, T.Y. Velikanova, P.G. Agraval, A.R. Abdulov, L.A. Dreval, Powder Metall. Met. Ceram. 47, 586 (2008)CrossRefGoogle Scholar
  16. 16.
    U.E. Klotz, C. Liu, P.J. Uggowitzer, J.F. Löffler, Intermetallics 15, 1666 (2007)CrossRefGoogle Scholar
  17. 17.
    C.G. Woychik, T.B. Massalski, Zeitschrift fuer Metallkunde/Mater. Res. Adv. Tech. 79, 149 (1988)Google Scholar
  18. 18.
    Y.N. Koval, G.S. Firstov, L. Delaey, J.V. Humbeeck, Scr. Metall. Mater. 31, 799 (1994)CrossRefGoogle Scholar
  19. 19.
    H.J. Chang, E.S. Park, Y.C. Kim, D.H. Kim, Mater. Sci. Eng. A Struct. 406, 119 (2005)CrossRefGoogle Scholar
  20. 20.
    W.H. Wang, J.J. Lewandowski, A.L. Greer, J. Mater. Res. 20, 2307 (2005)CrossRefGoogle Scholar
  21. 21.
    W.W. Mullins, R.F. Sekerka, J. Appl. Phys. 34, 323 (1963)CrossRefGoogle Scholar
  22. 22.
    H. Wang, D.M. Herlach, R.P. Liu, EPL 105, 36001 (2014)CrossRefGoogle Scholar
  23. 23.
    S.R. Coriell, R.L. Parker, Crystal Growth, vol. 703 (Pergamon, Oxford, 1967)Google Scholar
  24. 24.
    D.M. Herlach, Crystals 5, 355 (2015)CrossRefGoogle Scholar
  25. 25.
    K.R. Lim, J.H. Na, J.M. Park, W.T. Kim, D.H. Kim, J. Mater. Res. 25, 2183 (2010)CrossRefGoogle Scholar
  26. 26.
    H. Yang, J. Qiao, S. Wang, Y. Zhang, Acta Metall. Sin. (English Letters) 27, 621 (2014)CrossRefGoogle Scholar
  27. 27.
    D.C. Hofmann, J.Y. Suh, A. Wiest, G. Duan, M.L. Lind, M.D. Demetriou, W.L. Johnson, Nature 451, 1085 (2008)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Byoung Jin Kim
    • 1
  • Young Su Yun
    • 1
  • Won Tae Kim
    • 2
  • Do Hyang Kim
    • 1
  1. 1.Department of Materials Science and EngineeringYonsei UniversitySeoulKorea
  2. 2.Department of Laser and Optical Information EngineeringCheongju UniversityCheongjuKorea

Personalised recommendations