Advertisement

Metals and Materials International

, Volume 24, Issue 4, pp 821–829 | Cite as

Phase Structures and Magnetic Properties of Graphite Nanosheets and Ni-Graphite Nanocomposite Synthesized by Electrical Explosion of Wire in Liquid

  • Minh-Thuyet Nguyen
  • Jin-Hyung Kim
  • Jung-Goo Lee
  • Jin-Chun Kim
Article
  • 80 Downloads

Abstract

The present work studied on phases and magnetic properties of graphite nanosheets and Ni-graphite nanocomposite synthesized using the electrical explosion of wire (EEW) in ethanol. X-ray diffraction and field emission scanning electron microscope were used to investigate the phases and the morphology of the nanopowders obtained. It was found that graphite nanosheets were absolutely fabricated by EEW with a thickness of 29 nm and 3 μm diameter. The as-synthesized Ni-graphite composite powders had a Ni-coating on the surfaces of graphite sheets. The hysteresis loop of the as-exploded, the hydrogen-treated composite nanopowders and the sintered samples were examined with a vibrating sample magnetometer at room temperature. The Ni-graphite composite exposed the magnetic behaviors which are attributed to Ni component. The magnetic properties of composite had the improvement from 10.2 emu/g for the as-exploded powders to 15.8 emu/g for heat-treated powders and 49.16 emu/g for sintered samples.

Keywords

Nanocomposite Nickel Graphite nanosheets Magnetic materials Explosion of wire in liquid 

Notes

Acknowledgements

This research was supported by The Leading Human Resource Training Program of Regional Neo industry through the National Research Foundation of Korea (NRF) funded by the Korean Ministry of Science, ICT and future Planning (NRF-2016H1D5A1910587).

References

  1. 1.
    G.L. Sun et al., Mater. Lett. 62, 703–706 (2008)CrossRefGoogle Scholar
  2. 2.
    T.V Thu, Y.Tanizawa, N.H.H. Phuc, P.J. Ko, A. Sandhu, J. Phys. Conf. Ser. 433, 012003 (2013)CrossRefGoogle Scholar
  3. 3.
    S.R. Bakshi, D. Lahiri, A. Agarwal, Int. Mater. Rev. 55, 41–64 (2010)CrossRefGoogle Scholar
  4. 4.
    A.R.P. Singh et al., Mater. Sci. Technol. 26, 1393–1400 (2010)CrossRefGoogle Scholar
  5. 5.
    S.W. Kim et al., J. Korean Inst. Metals Mater. 47, 50–58 (2009)CrossRefGoogle Scholar
  6. 6.
    K.T. Kim et al., Mater. Sci. Eng. A Struct. Mater. Prop. Microstruct. Process. 430, 27–33 (2006)CrossRefGoogle Scholar
  7. 7.
    N. Liu et al., Adv. Funct. Mater. 18, 1518–1525 (2008)CrossRefGoogle Scholar
  8. 8.
    C.Y. Su et al., ACS Nano 5, 2332–2339 (2011)CrossRefGoogle Scholar
  9. 9.
    Y.S. Kwon et al., Scr. Mater. 44, 2247–2251 (2001)CrossRefGoogle Scholar
  10. 10.
    S.B. Lee et al., Aerosol Sci. Technol. 44, 1131–1139 (2010)CrossRefGoogle Scholar
  11. 11.
    A.D. Rud et al., J. Non Cryst. Solids 353, 3650–3654 (2007)CrossRefGoogle Scholar
  12. 12.
    V.Y. Baklar’, Surf. Eng. Appl. Electrochem. 47, 61–65 (2011)CrossRefGoogle Scholar
  13. 13.
    X. Gao et al., Nanoscale 9, 10639–10646 (2017)CrossRefGoogle Scholar
  14. 14.
    L.S. Tang, M. Mariatti, Polym. Plast. Technol. Eng. 48, 614–620 (2009)CrossRefGoogle Scholar
  15. 15.
    Y. Wang, Y. Gao, L. Sun, Y.F. Li, B. Zheng, W. Zhai, Results Phys. 7, 263–271 (2016)CrossRefGoogle Scholar
  16. 16.
    C.H. Hager et al., Wear 267, 1470–1481 (2009)CrossRefGoogle Scholar
  17. 17.
    S.K. Singh, A.K.Yadav, M.J. Akhtar, K.K. Kar, Adv. Mater. Proc. 2, 2–5 (2016)CrossRefGoogle Scholar
  18. 18.
    K. Sedlackova et al., Carbon 43, 2192–2198 (2005)CrossRefGoogle Scholar
  19. 19.
    W.A.A. Yunasfi, Int. J. Technol. 3, 479–485 (2016)CrossRefGoogle Scholar
  20. 20.
    Q. Li et al., Synth. Met. 160, 200–202 (2010)CrossRefGoogle Scholar
  21. 21.
    A. Liu et al., Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 37A, 2849–2858 (2006)CrossRefGoogle Scholar
  22. 22.
    Z. Ren et al., Nanotechnology. 26, 065706 (2015)CrossRefGoogle Scholar
  23. 23.
    X. Xu et al., Surf. Coat. Technol. 240, 425–431 (2014)CrossRefGoogle Scholar
  24. 24.
    H.J. Zhao et al., Mater. Des. 28, 1374–1378 (2007)CrossRefGoogle Scholar
  25. 25.
    D.V. Dudina et al., Sci. Sinter. 47, 237–248 (2015)CrossRefGoogle Scholar
  26. 26.
    D.H. Lee et al., ACS Appl. Mater. Interfaces. 6, 137–142 (2014)CrossRefGoogle Scholar
  27. 27.
    L.H. Bac, J.S. Kim, J.C. Kim, Res. Chem. Intermed. 36, 795–800 (2010)CrossRefGoogle Scholar
  28. 28.
    C. Cho, Y.-C. Ha, C. Kang, Y.-S. Jin, G-H Rim. J. Korean Phys. Soc. 57, 1807–1810 (2010)CrossRefGoogle Scholar
  29. 29.
    H. Terrones et al., Solid State Sci. 8, 303–320 (2006)CrossRefGoogle Scholar
  30. 30.
    T.M.A.F. Palacio, (Amsterdam, The Netherlands: Elsevier, 2006)Google Scholar
  31. 31.
    F.T.L. Muniz et al., Acta Crystallogr. sect. A. 72, 385–390 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Minh-Thuyet Nguyen
    • 1
    • 2
  • Jin-Hyung Kim
    • 2
  • Jung-Goo Lee
    • 3
  • Jin-Chun Kim
    • 1
  1. 1.School of Materials Science and EngineeringUniversity of UlsanUlsanRepublic of Korea
  2. 2.School of Materials Science and EngineeringHanoi University of Science and TechnologyHanoiVietnam
  3. 3.Functional Nano Powder DepartmentKorea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations