Skip to main content
Log in

Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress–strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. G. Frommeyer, U. Brüx, P. Neumann, ISIJ Int. 43, 438 (2003)

    Article  Google Scholar 

  2. S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Acta Mater. 52, 2005 (2004)

    Article  Google Scholar 

  3. I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Mater. Sci. Eng. A 527, 3552 (2010)

    Article  Google Scholar 

  4. G. Dini, A. Najafizadeh, R. Ueji, S.M. Monir-Vaghefi, Mater. Lett. 64, 15 (2010)

    Article  Google Scholar 

  5. B.H. Park, H.Y. Um, J.G. Kim, H.Y. Jeong, S. Lee, H.S. Kim, Met. Mater. Int. 22, 1003 (2016)

    Article  Google Scholar 

  6. K.K. Ryoo, M.-Y. Ha, K.D. Lee, Korean J. Met. Mater. 54, 711 (2016)

    Article  Google Scholar 

  7. K.H. So, J.S. Kim, Y.S. Chun, K.-T. Park, Y.-K. Lee, C.S. Lee, ISIJ Int. 49, 1952 (2009)

    Article  Google Scholar 

  8. L. Chen, H.-S. Kim, S.-K. Kim, B.C. De Cooman, ISIJ Int. 47, 1804 (2007)

    Article  Google Scholar 

  9. L. Zaho, N.H.V. Dijk, A.J.E. Lefering, J. Sietsma, J. Mater. Sci. 48, 1474 (2013)

    Article  Google Scholar 

  10. G. Jung, I.S. Woo, D.W. Suh, S.-J. Kim, Met. Mater. Int. 22, 187 (2016)

    Article  Google Scholar 

  11. O. Kwon, K.Y. Lee, G.S. Kim, K.G. Chin, Mater. Sci. Forum 638–642, 136 (2010)

    Article  Google Scholar 

  12. R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, K. Kunishige, Scripta Mater. 59, 963 (2008)

    Article  Google Scholar 

  13. L. Li, S. Liu, B. Ye, S. Hu, Z. Zhou, Met. Mater. Int. 22, 391 (2016)

    Article  Google Scholar 

  14. O. Bouaziz, J.P. Masse, G. Petitgand, M.X. Huang, Adv. Eng. Mater. 18, 56 (2016)

    Article  Google Scholar 

  15. S. Nambu, M. Michiuchi, J. Inoue, T. Koseki, Compos. Sci. Technol. 69, 1936 (2009)

    Article  Google Scholar 

  16. J.-H. Cha, S.-H. Kim, Y.-S. Lee, H.-W. Kim, Y.S. Choi, Met. Mater. Int. 22, 880 (2016)

    Article  Google Scholar 

  17. J. Inoue, S. Nambu, Y. Ishimoto, T. Koseki, Scr. Mater. 59, 1055 (2008)

    Article  Google Scholar 

  18. J.I. Yoon, J.G. Kim, J.M. Jung, D.J. Lee, H.J. Jeong, M. Shahbaz, S. Lee, H.S. Kim, Korean J. Met. Mater. 54, 231 (2016)

    Article  Google Scholar 

  19. S.-J. Lee, Y.-M. Park, Y.-K. Lee, Mater. Sci. Eng. A 515, 32 (2009)

    Article  Google Scholar 

  20. H.J. Sung, N.H. Heo, S.-J. Kim, Met. Mater. Int. 22, 962 (2016)

    Article  Google Scholar 

  21. B.X. Liu, F.X. Yin, X.L. Dai, J.N. He, W. Fang, C.X. Chen, Y.C. Dong, Mater. Sci. Eng. A 679, 172 (2017)

    Article  Google Scholar 

  22. Y.N. Dastur, W.C. Leslie, Metall. Trans. A 12, 749 (1981)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by POSCO under a Contract No. 2014Y015 and by Brain Korea 21 PLUS Project for Center for Creative Industrial Materials. The authors would like to thank to Dr. Taejin Song of POSCO for the fabrication of the Hadfield-cored MLS sheet.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sunghak Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chin, KG., Kang, CY., Park, J. et al. Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel. Met. Mater. Int. 24, 489–495 (2018). https://doi.org/10.1007/s12540-018-0081-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-0081-z

Keywords

Navigation