Advertisement

Metals and Materials International

, Volume 24, Issue 3, pp 489–495 | Cite as

Fabrication of Hadfield-Cored Multi-layer Steel Sheet by Roll-Bonding with 1.8-GPa-Strength-Grade Hot-Press-Forming Steel

  • Kwang-Geun Chin
  • Chung-Yun Kang
  • Jaeyeong Park
  • Sunghak Lee
Article
  • 257 Downloads

Abstract

An austenitic Hadfield steel was roll-bonded with a 1.8-GPa-strength-grade martensitic hot-press-forming (HPF) steel to fabricate a multi-layer steel (MLS) sheet. Near the Hadfield/HPF interface, the carburized and decarburized layers were formed by the carbon diffusion from the Hadfield (1.2%C) to HPF (0.35%C) layers, and could be regarded as kinds of very thin multi-layers of 35 μm in thickness. The tensile test and fractographic data indicated that the MLS sheet was fractured abruptly within the elastic range by the intergranular fracture occurred in the carburized layer. This was because C was mainly segregated at prior austenite grain boundaries in the carburized layer, which weakened grain boundaries to induce the intergranular fracture. In order to solve the intergranular facture problem, the MLS sheet was tempered at 200 °C. The stress–strain curve of the tempered MLS sheet lay between those of the HPF and Hadfield sheets, and a rule of mixtures was roughly satisfied. Tensile properties of the MLS sheet were dramatically improved after the tempering, and the intergranular fracture was erased completely. In particular, the yield strength up to 1073 MPa along with the high strain hardening and excellent ductility of 32.4% were outstanding because the yield strength over 1 GPa was hardly achieved in conventional austenitic steels.

Keywords

Multi-layer steel (MLS) sheet Hadfield steel Hot-press-forming (HPF) steel Roll-bonding Carburized and decarburized layers Intergranular cracking Grain-boundary carbide 

Notes

Acknowledgements

This work was supported by POSCO under a Contract No. 2014Y015 and by Brain Korea 21 PLUS Project for Center for Creative Industrial Materials. The authors would like to thank to Dr. Taejin Song of POSCO for the fabrication of the Hadfield-cored MLS sheet.

References

  1. 1.
    G. Frommeyer, U. Brüx, P. Neumann, ISIJ Int. 43, 438 (2003)CrossRefGoogle Scholar
  2. 2.
    S. Vercammen, B. Blanpain, B.C. De Cooman, P. Wollants, Acta Mater. 52, 2005 (2004)CrossRefGoogle Scholar
  3. 3.
    I. Gutierrez-Urrutia, S. Zaefferer, D. Raabe, Mater. Sci. Eng. A 527, 3552 (2010)CrossRefGoogle Scholar
  4. 4.
    G. Dini, A. Najafizadeh, R. Ueji, S.M. Monir-Vaghefi, Mater. Lett. 64, 15 (2010)CrossRefGoogle Scholar
  5. 5.
    B.H. Park, H.Y. Um, J.G. Kim, H.Y. Jeong, S. Lee, H.S. Kim, Met. Mater. Int. 22, 1003 (2016)CrossRefGoogle Scholar
  6. 6.
    K.K. Ryoo, M.-Y. Ha, K.D. Lee, Korean J. Met. Mater. 54, 711 (2016)CrossRefGoogle Scholar
  7. 7.
    K.H. So, J.S. Kim, Y.S. Chun, K.-T. Park, Y.-K. Lee, C.S. Lee, ISIJ Int. 49, 1952 (2009)CrossRefGoogle Scholar
  8. 8.
    L. Chen, H.-S. Kim, S.-K. Kim, B.C. De Cooman, ISIJ Int. 47, 1804 (2007)CrossRefGoogle Scholar
  9. 9.
    L. Zaho, N.H.V. Dijk, A.J.E. Lefering, J. Sietsma, J. Mater. Sci. 48, 1474 (2013)CrossRefGoogle Scholar
  10. 10.
    G. Jung, I.S. Woo, D.W. Suh, S.-J. Kim, Met. Mater. Int. 22, 187 (2016)CrossRefGoogle Scholar
  11. 11.
    O. Kwon, K.Y. Lee, G.S. Kim, K.G. Chin, Mater. Sci. Forum 638–642, 136 (2010)CrossRefGoogle Scholar
  12. 12.
    R. Ueji, N. Tsuchida, D. Terada, N. Tsuji, Y. Tanaka, A. Takemura, K. Kunishige, Scripta Mater. 59, 963 (2008)CrossRefGoogle Scholar
  13. 13.
    L. Li, S. Liu, B. Ye, S. Hu, Z. Zhou, Met. Mater. Int. 22, 391 (2016)CrossRefGoogle Scholar
  14. 14.
    O. Bouaziz, J.P. Masse, G. Petitgand, M.X. Huang, Adv. Eng. Mater. 18, 56 (2016)CrossRefGoogle Scholar
  15. 15.
    S. Nambu, M. Michiuchi, J. Inoue, T. Koseki, Compos. Sci. Technol. 69, 1936 (2009)CrossRefGoogle Scholar
  16. 16.
    J.-H. Cha, S.-H. Kim, Y.-S. Lee, H.-W. Kim, Y.S. Choi, Met. Mater. Int. 22, 880 (2016)CrossRefGoogle Scholar
  17. 17.
    J. Inoue, S. Nambu, Y. Ishimoto, T. Koseki, Scr. Mater. 59, 1055 (2008)CrossRefGoogle Scholar
  18. 18.
    J.I. Yoon, J.G. Kim, J.M. Jung, D.J. Lee, H.J. Jeong, M. Shahbaz, S. Lee, H.S. Kim, Korean J. Met. Mater. 54, 231 (2016)CrossRefGoogle Scholar
  19. 19.
    S.-J. Lee, Y.-M. Park, Y.-K. Lee, Mater. Sci. Eng. A 515, 32 (2009)CrossRefGoogle Scholar
  20. 20.
    H.J. Sung, N.H. Heo, S.-J. Kim, Met. Mater. Int. 22, 962 (2016)CrossRefGoogle Scholar
  21. 21.
    B.X. Liu, F.X. Yin, X.L. Dai, J.N. He, W. Fang, C.X. Chen, Y.C. Dong, Mater. Sci. Eng. A 679, 172 (2017)CrossRefGoogle Scholar
  22. 22.
    Y.N. Dastur, W.C. Leslie, Metall. Trans. A 12, 749 (1981)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Kwang-Geun Chin
    • 1
  • Chung-Yun Kang
    • 1
  • Jaeyeong Park
    • 2
  • Sunghak Lee
    • 2
  1. 1.School of Materials Science and EngineeringPusan National UniversityPusanKorea
  2. 2.Center for Advanced Aerospace Materials, Pohang University of Science and TechnologyPohangKorea

Personalised recommendations