Advertisement

Metals and Materials International

, Volume 24, Issue 3, pp 507–515 | Cite as

High Temperature Oxidation of Hot-Dip Aluminized T92 Steels

  • Muhammad Ali Abro
  • Junhee Hahn
  • Dong Bok Lee
Article
  • 247 Downloads

Abstract

The T92 steel plate was hot-dip aluminized, and oxidized in order to characterize the high-temperature oxidation behavior of hot-dip aluminized T92 steel. The coating consisted of Al-rich topcoat with scattered Al3Fe grains, Al3Fe-rich upper alloy layer with scattered (Al, Al5Fe2, AlFe)-grains, and Al5Fe2–rich lower alloy layer with scattered (Al5Fe2, AlFe)-grains. Oxidation at 800 °C for 20 h formed (α-Al2O3 scale)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer), while oxidation at 900 °C for 20 h formed (α-Al2O3 scale plus some Fe2O3)/(AlFe layer)/(AlFe3 layer)/(α-Fe(Al) layer) from the surface. During oxidation, outward migration of all substrate elements, inward diffusion of oxygen, and back and forth diffusion of Al occurred according to concentration gradients. Also, diffusion transformed and broadened AlFe and AlFe3 layers dissolved with some oxygen and substrate alloying elements. Hot-dip aluminizing improved the high-temperature oxidation resistance of T92 steel through preferential oxidation of Al at the surface.

Keywords

T92 steel Surface modification Oxidation Hot-dipping Aluminizing 

Notes

Acknowledgements

This work was supported by the project “Development of the High-Efficiency Low-Emission Future Energy Production Technology (EO15580)” of National Research Council of Science and Technology (NST) grant by the Korea government (MSIP) (No. CRC-15-07-KIER).

References

  1. 1.
    M. Schütze, M. Schorr, D.P. Renusch, A. Donchev, J.P.T. Vossen, Mater. Res. 7, 111 (2004)CrossRefGoogle Scholar
  2. 2.
    K. Chandra, A. Kranzmann, R.S. Neumann, F. Rizzo, Oxid. Met. 84, 463 (2015)CrossRefGoogle Scholar
  3. 3.
    M.A. Abro, D.B. Lee, Met. Mater. Int. 23, 92 (2017)CrossRefGoogle Scholar
  4. 4.
    M.J. Kim, D.B. Lee, Korean J. Met. Mater. 53, 406 (2015)CrossRefGoogle Scholar
  5. 5.
    A.R. Rastkar, N. Rezvani, Met. Mater. Trans. 46A, 4132 (2015)CrossRefGoogle Scholar
  6. 6.
    Y.I. Son, C.H. Chung, R.R. Gowkanapalli, C.H. Moon, J.S. Park, Met. Mater. Int. 21, 1 (2015)CrossRefGoogle Scholar
  7. 7.
    A. Agüero, M. Gutiérrez, V. González, Mater. High Temp. 25, 257 (2008)CrossRefGoogle Scholar
  8. 8.
    M. Schütze, M. Malessa, V. Rohr, T. Weber, Surf. Coat. Technol. 201, 3872 (2006)CrossRefGoogle Scholar
  9. 9.
    R. Drewett, Corros. Sci. 9, 823 (1969)CrossRefGoogle Scholar
  10. 10.
    C.J. Wang, S.M. Chen, Surf. Coat. Technol. 200, 6601 (2006)CrossRefGoogle Scholar
  11. 11.
    W.J. Cheng, C.J. Wang, Appl. Surf. Sci. 277, 139 (2013)CrossRefGoogle Scholar
  12. 12.
    X. Chen, Q. Huang, Z. Yan, Y. Song, S. Liu, Z. Jiang, J. Nucl. Mater. 442, S597 (2013)CrossRefGoogle Scholar
  13. 13.
    C.J. Wang, M. Badaruddin, Surf. Coat. Technol. 205, 1200 (2010)CrossRefGoogle Scholar
  14. 14.
    W.J. Cheng, C.J. Wang, Appl. Surf. Sci. 257, 4663 (2011)CrossRefGoogle Scholar
  15. 15.
    W.J. Cheng, C.J. Wang, Appl. Surf. Sci. 277, 258 (2013)CrossRefGoogle Scholar
  16. 16.
    H.R. Shahverdi, M.R. Ghomashchi, S. Shabestari, J. Hejazi, J. Mater. Process. Technol. 124, 345 (2002)CrossRefGoogle Scholar
  17. 17.
    B. Lemmens, H. Springer, I.D. Graeve, J.D. Strycker, D. Raabe, K. Verbeken, Surf. Coat. Technol. 319, 104 (2017)CrossRefGoogle Scholar
  18. 18.
    M. Badaruddin, C.J. Wang, H. Wardono, Tarkono, D. Asmi, AIP Conf. Proc. 1711, 0400021 (2016)Google Scholar
  19. 19.
    M.B. Lin, C.J. Wang, Surf. Coat. Technol. 205, 1220 (2010)CrossRefGoogle Scholar
  20. 20.
    W.J. Cheng, Y.Y. Chang, C.J. Wang, Surf. Coat. Technol. 203, 401 (2008)CrossRefGoogle Scholar
  21. 21.
    Y.Y. Chang, C.C. Tsaur, J.C. Rock, Surf. Coat. Technol. 200, 6588 (2006)CrossRefGoogle Scholar
  22. 22.
    J.H. Kim, J.P. Wang, C.Y. Kang, Met. Mater. Int. 17, 931 (2011)CrossRefGoogle Scholar
  23. 23.
    M. Emami, H.R. Shahverdi, S. Hayashi, M.J. Torkamany, Metall. Mater. Trans. A 44, 3176 (2013)CrossRefGoogle Scholar
  24. 24.
    G.H. Awan, F.U. Hasan, Mater. Sci. Eng. A 472, 157 (2008)CrossRefGoogle Scholar
  25. 25.
    P. Mathiazhagan, A.S. Khanna, High Temp. Mater. Proc. 30, 43 (2011)CrossRefGoogle Scholar
  26. 26.
    M.J. Rathod, M. Kutsuna, Weld. J. 83, 16S (2004)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Muhammad Ali Abro
    • 1
  • Junhee Hahn
    • 2
  • Dong Bok Lee
    • 3
  1. 1.Department of Mechanical EngineeringMUETKhairpur Mir’sPakistan
  2. 2.Center for Energy Materials MetrologyKorea Research Institute of Standards and ScienceDaejonRepublic of Korea
  3. 3.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea

Personalised recommendations