Metals and Materials International

, Volume 24, Issue 2, pp 249–254 | Cite as

Low Temperature Diffusion Transformations in Fe–Ni–Ti Alloys During Deformation and Irradiation

  • Victor Sagaradze
  • Valery Shabashov
  • Natalya Kataeva
  • Kirill Kozlov
  • Vadim Arbuzov
  • Sergey Danilov
  • Yury Ustyugov


The deformation-induced dissolution of Ni3Ti intermetallics in the matrix of austenitic alloys of Fe–36Ni–3Ti type was revealed in the course of their cascade-forming neutron irradiation and cold deformation at low temperatures via employment of Mössbauer method. The anomalous deformation-related dissolution of the intermetallics has been explained by the migration of deformation-induced interstitial atoms from the particles into a matrix in the stress field of moving dislocations. When rising the deformation temperature, this process is substituted for by the intermetallics precipitation accelerated by point defects. A calculation of diffusion processes has shown the possibility of the realization of the low-temperature diffusion of interstitial atoms in configurations of the crowdions and dumbbell pairs at 77–173 K. The existence of interstitial atoms in the Fe–36Ni alloy irradiated by electrons or deformed at 77 K was substantiated in the experiments of the electrical resistivity measurements.


Alloys Deformation Neutron irradiation Phase transformation Mossbauer effect 



The research was carried out within the state assignment of FASO of Russia (theme “Structure” No. 01201463331) under partial financial support from the Russian Scientific Foundation (Project No. 14-13-00908, part 3.2). The authors are grateful to Zamatovskii A.E. and Lyashkov K.A. for the aid in the work.


  1. 1.
    Y. Estrin, A. Vinogradov, Acta Mater. 61, 782 (2013)CrossRefGoogle Scholar
  2. 2.
    V.A. Zavalishin, A.I. Deryagin, V.V. Sagaradze, Phys. Met. Metallogr. 75, 173 (1993)Google Scholar
  3. 3.
    V.V. Sagaradze, V.A. Shabashov, T.M. Lapina, N.L. Pecherkina, V.P. Pilyugin, Phys. Met. Metallogr. 78, 619 (1994)Google Scholar
  4. 4.
    V.V. Sagaradze, V.A. Shabashov, Phys. Met. Metallogr. 112, 146 (2011)CrossRefGoogle Scholar
  5. 5.
    X. Quelennec, A. Menand, J.M. Le Breton, R. Pippan, X. Sauvage, Philos. Mag. 90, 1179 (2010)CrossRefGoogle Scholar
  6. 6.
    V.V. Sagaradze, V.A. Shabashov, A.G. Mukoseev, N.L. Pecherkina, I.V. Sagaradze, Phys. Met. Metallogr. 91, 299 (2001)Google Scholar
  7. 7.
    V.F. Mazanko, D.S. Gertzriken, V.P. Bevz, V.M. Mironov, O.A. Mironova, Metallofizika i Noveishie Tekhnologii 32, 1267 (2010)Google Scholar
  8. 8.
    H. Gleiter, Acta Met. 16, 455 (1968)CrossRefGoogle Scholar
  9. 9.
    A.R. Kuznetsov, V.V. Sagaradze, Phys. Met. Metallogr. 93, 404 (2002)Google Scholar
  10. 10.
    V.V. Sagaradze, V.A. Shabashov, N.V. Kataeva, V.A. Zavalishin, K.A. Kozlov, A.R. Kuznetsov, A.V. Litvinov, V.P. Pilyugin, Philos. Mag. 96, 1724 (2016)CrossRefGoogle Scholar
  11. 11.
    V.V. Sagaradze, A.I. Uvarov, Strengthening and Properties of Austenitic Steels (PPD (Printing and Publication Department) of UB RAS, Ekaterinburg, 2013). [in Russian] Google Scholar
  12. 12.
    V.A. Teplov, V.P. Pilyugin, R.I. Kuznetsov, D.I. Tupitsa, V.A. Shabashov, V.M. Gundyrev, Phys. Met. Metallogr. 64, 83 (1987)Google Scholar
  13. 13.
    V.S. Rusakov, Mössbauer Spectroscopy of Locally Inhomogeneous Systems (Institute of Nuclear Physics of Kazakhstan National Radiation Centre, Almaty, 2000). [in Russian] Google Scholar
  14. 14.
    A.Z. Menshikov, E.E. Yurchikov, Izvestiya AN SSSR Ser. Phys. 36, 1463 (1972)Google Scholar
  15. 15.
    V.V. Ovchinnikov, F.F. Makhin’ko, V.I. Solomonov, N.V. Gushchina, O.A. Kaigorodova, Pis’ma J. Tekh. Phiz. 38, 86 (2012)Google Scholar
  16. 16.
    P.M. Derlet, D. Nguyen-Manh, S.L. Dudarev, Phys. Rev. B. 76, 054107 (2007)CrossRefGoogle Scholar
  17. 17.
    A.M. Iskandarov, N.N. Medvedev, P.V. Zakharov, S.V. Dmitriev, Comput. Mater. Sci. 47, 429 (2009)CrossRefGoogle Scholar
  18. 18.
    A.V. Markidonov, M.D. Starostenkov, T.I. Neverova, A.A. Barchuk, Pis’ma o Materialakh Lett. Mater. 102, 102 (2011)Google Scholar
  19. 19.
    I.M. Mikhailovskii, Z.I. Dranova, Zh Exp, Theor. Fiz. J. Exp. Theor. Phys. 63, 567 (1972)Google Scholar
  20. 20.
    Y.I. Golovin, Fiz. Tverd. Tela Phys. Solid State 50, 2113 (2008)Google Scholar
  21. 21.
    C.J. Meechan, A. Sosin, J. Appl. Phys. 29, 738 (1958)CrossRefGoogle Scholar
  22. 22.
    L.N. Larikov, V.M. Falchenko, V.F. Mazanko, Dokl. AN SSSR Proc. USSR Acad. Sci. 221, 1073 (1975)Google Scholar
  23. 23.
    K. Sassa, W. Petry, G. Vogl, Philos. Mag. A 48, 41 (1983)CrossRefGoogle Scholar
  24. 24.
    S.E. Danilov, V.L. Arbuzov, A.P. Druzhkov, K.V. Shal’nov, Voprosy atomnoi nauki i tekhniki (Problems of Nuclear Science and Engineering) Ser. FRP and RM (The Physics of Irradiation Damage and Irradiation Materials Science), vol. 3 (2000). [in Russian] Google Scholar
  25. 25.
    A. Chamberod, J. Laugier, J.M. Penisson, J. Magn. Magn. Mater. 10, 139 (1979)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Victor Sagaradze
    • 1
  • Valery Shabashov
    • 1
  • Natalya Kataeva
    • 1
  • Kirill Kozlov
    • 1
  • Vadim Arbuzov
    • 1
  • Sergey Danilov
    • 1
  • Yury Ustyugov
    • 1
  1. 1.Mikheev Institute of Metal Physics, Ural BranchRussian Academy of SciencesEkaterinburgRussia

Personalised recommendations