Metals and Materials International

, Volume 24, Issue 2, pp 291–299 | Cite as

Origin of Surface Irregularities on Ti–10V–2Fe–3Al Beta Titanium Alloy

  • Muhammad Iman Utama
  • Abdul Aziz Ammar
  • Nokeun Park
  • Eung Ryul Baek


We studied the origin of different characteristics and properties of a Ti–10V–2Fe–3Al beta (β) titanium alloy with surface height irregularities that occurred during machining. The height differences were observed in two different regions, labeled as “soft region” and “hard region.” The present study showed a higher Fe and a lower Al content in the hard region, which resulted in higher β-phase stability to resist primary alpha (αp) phase precipitation caused by a failure of the solution treatment process. In contrast, the soft region contained a higher volume fraction of αp phase and a lower volume fraction of the matrix, which consisted of a combination of β and secondary alpha (αs) phase. A high number of αs/β interface in the matrix with a predicted hardness of 520 HV generated an improvement of hardness in the hard region. Therefore, the hard and the soft regions had different abilities to resist wear during machining process, resulting in surface height irregularities.


Titanium alloys Phase transformation Secondary alpha phase Interface EBSD Hardness measurement 



This study was supported by the 2016 Yeungnam University Research grants.

Supplementary material

12540_2018_42_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1474 kb)


  1. 1.
    C. Leyens, M. Peters, Titanium an Titanium Alloys (Wiley, New York, 2003)CrossRefGoogle Scholar
  2. 2.
    G.T. Terlinde, T.W. Duerig, J.C. Williams, Microstructure, tensile deformation, and fracture in aged Ti–10V–2Fe–3Al. Metall. Trans. A 14A, 2101–2115 (1983)CrossRefGoogle Scholar
  3. 3.
    A. Bhattacharjee, Effect of b grain size on stress induced martensitic transformation in b solution treated Ti–10V–2Fe–3Al alloy. Scr. Mater. 53, 195–200 (2005). CrossRefGoogle Scholar
  4. 4.
    C. Li, X. Wu, J.H. Chen, S. van der Zwaag, Influence of α morphology and volume fraction on the stress-induced martensitic transformation in Ti–10V–2Fe–3Al. Mater. Sci. Eng. A 528, 5854–5860 (2011). CrossRefGoogle Scholar
  5. 5.
    S. Neelakantan, P.E.J. Rivera-Díaz-del-Castillo, S. van der Zwaag, Prediction of the martensite start temperature for β titanium alloys as a function of composition. Scr. Mater. 60, 611–614 (2009). CrossRefGoogle Scholar
  6. 6.
    C. Li, J. Chen, W. Li, Y.J. Ren, J.J. He, Z.X. Song, Effect of heat treatment variations on the microstructure evolution and mechanical properties in a beta metastable Ti alloy. J. Alloys Compd. 684, 466–473 (2016). CrossRefGoogle Scholar
  7. 7.
    L. Xu, Tuning their Beta Phase Stability and Low-Temperature Martensitic Transformation (Delft University of Technology, Delft, 2015)Google Scholar
  8. 8.
    M. Jackson, R. Dashwood, L. Christodoulou, H. Flower, The microstructural evolution of near beta alloy Ti–10V–2Fe–3Al during subtransus forging. Metall. Mater. Trans. A 36A, 1317–1327 (2005). CrossRefGoogle Scholar
  9. 9.
    J. Fan, J. Li, H. Kou, K. Hua, B. Tang, Y. Zhang, Influence of solution treatment on microstructure and mechanical properties of a near β titanium alloy Ti-7333. Mater. Des. 83, 499–507 (2015). CrossRefGoogle Scholar
  10. 10.
    Z.X. Du, S.L. Xiao, Y.P. Shen, J.S. Liu, J. Liu, L.J. Xu, F.T. Kong, Y.Y. Chen, Effect of hot rolling and heat treatment on microstructure and tensile properties of high strength beta titanium alloy sheets. Mater. Sci. Eng. A 631, 67–74 (2015). CrossRefGoogle Scholar
  11. 11.
    G. Srinivasu, Y. Natraj, A. Bhattacharjee, T.K. Nandy, G.V.S. Nageswara, Rao, Tensile and fracture toughness of high strength β Titanium alloy, Ti–10V–2Fe–3Al, as a function of rolling and solution treatment temperatures. Mater. Des. 47, 323–330 (2013). CrossRefGoogle Scholar
  12. 12.
    A.C. Van Arkel, History and Extractive Metallurgy (Wiley, New York, 2015)Google Scholar
  13. 13.
    S. Seong, O. Younossi, B.W. Goldsmith, Titanium Industrial Base, Price Trends, and Technology Initiatives (RAND Corporation, Santa Monica, 2009)CrossRefGoogle Scholar
  14. 14.
    A.J. Wilby, D.P. Neale, Defects Introduced into Metals During Fabrication and Service (Eolss Publishers, Oxford, 2009)Google Scholar
  15. 15.
    R.R. Moura, M.B. da Silva, Á.R. Machado, W.F. Sales, The effect of application of cutting fluid with solid lubricant in suspension during cutting of Ti–6Al–4V alloy. Wear 332–333, 762–771 (2015). CrossRefGoogle Scholar
  16. 16.
    J. Satoh, M. Gotoh, Y. Maeda, Stretch-drawing of titanium sheets. J. Mater. Process. Technol. 139, 201–207 (2003). CrossRefGoogle Scholar
  17. 17.
    J.D. Beal, R. Boyer, D. Sanders, T.B. Company, Forming of titanium and titanium alloys. ASM Handb. Metalwork. Sheet Form. 14B, 656–669 (2006). Google Scholar
  18. 18.
    J.D. Cotton, R.D. Briggs, R.R. Boyer, S. Tamirisakandala, P. Russo, N. Shchetnikov, J.C. Fanning, State of the art in beta titanium alloys for airframe applications. JOM 67, 1281–1303 (2015). CrossRefGoogle Scholar
  19. 19.
    H.F. Wu, L.L. Wu, W.J. Slagter, J.L. Verolme, Use of rule of mixtures and metal volume fraction for mechanical property predictions of fibre-reinforced aluminium laminates. J. Mater. Sci. 29, 4583–4591 (1994). CrossRefGoogle Scholar
  20. 20.
    M.A. Ghafaar, A.A. Mazen, N.A. El-Mahallawy, Application of the rule of mixtures and Halpin-Tsai equations to woven fabric reinforced epoxy composites. J. Eng. Sci. 34, 227–236 (2006)Google Scholar
  21. 21.
    K.K. Chawla, The Applicability of the “rule-of-mixtures” to the strength properties of metal-matrix composites. Rev. Bras. Fís. 4, 411–418 (1974)Google Scholar
  22. 22.
    J.P. Angle, Z. Wang, C. Dames, M.L. Mecartney, Comparison of two-phase thermal conductivity models with experiments on dilute ceramic composites. J. Am. Ceram. Soc. 96, 2935–2942 (2013). CrossRefGoogle Scholar
  23. 23.
    N. Poondla, T.S. Srivatsan, A. Patnaik, M. Petraroli, A study of the microstructure and hardness of two titanium alloys: Commercially pure and Ti–6Al–4V. J. Alloys Compd. 486, 162–167 (2009). CrossRefGoogle Scholar
  24. 24.
    S.S. Da Rocha, G.L. Adabo, G.E.P. Henriques, M.A.D.A. Nóbilo, Vickers hardness of cast commercially pure titanium and Ti–6Al–4V alloy submitted to heat treatments. Braz. Dent. J. 17, 126–129 (2006). CrossRefGoogle Scholar
  25. 25.
    A.F. Gerday, M. Ben Bettaieb, L. Duchene, N. Clement, H. Diarra, A.M. Habraken, Material behavior of the hexagonal alpha phase of a titanium alloy identified from nanoindentation tests. Eur. J. Mech. A. Solids 30, 248–255 (2011). CrossRefGoogle Scholar
  26. 26.
    Y. Ji, T.W. Heo, F. Zhang, L.Q. Chen, Theoretical assessment on the phase transformation kinetic pathways of multi-component Ti alloys: Application to Ti–6Al–4V. J. Phase Equilib. Diffus. 37, 53–64 (2016). CrossRefGoogle Scholar
  27. 27.
    M. Motyka, K. Kubiak, J. Sieniawski, W. Ziaja, Phase transformations and characterization of α + β titanium alloys. Compr. Mater. Process. (2014). Google Scholar
  28. 28.
    G. Lütjering, J.C. Williams, Titanium, Engineering Materials and Processes (Springer, Berlin, 2007)Google Scholar
  29. 29.
    P. Castany, J. Douin, A. Coujou, In situ transmission electron microscopy deformation of the titanium alloy Ti–6Al–4V : interface behaviour. Mater. Sci. Eng. A 484, 719–722 (2008). CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringYeungnam UniversityGyeongsanRepublic of Korea

Personalised recommendations