Metals and Materials International

, Volume 24, Issue 2, pp 363–370 | Cite as

Thermal Plasma Spheroidization of High-Nitrogen Stainless Steel Powder Alloys Synthesized by Mechanical Alloying

  • Nikolay G. Razumov
  • Anatoly A. Popovich
  • QingSheng Wang
Article
  • 56 Downloads

Abstract

This paper presents the results of experimental studies on the treatment of Fe–23Cr–11Mn–1N high-nitrogen stainless steel powder alloys, synthesized by the mechanical alloying (MA) of elemental powders in the flow of a thermal plasma. Fe–23Cr–11Mn–1N high-nitrogen stainless steel powder alloys were prepared by MA in the attritor under an argon atmosphere. For spheroidization of Fe–23Cr–11Mn–1N high-nitrogen stainless steel powder alloys, the TekSphero 15 plant manufactured by Tekna Plasma Systems Inc was used. The studies have shown the possibility of obtaining Fe–23Cr–11Mn–1N high-nitrogen spherical powders steel alloys from the powder obtained by MA. According to the results of a series of experiments, it was found that the results of plasma spheroidization of powders essentially depend on the size of the fraction due to some difference in the particle shape and flowability, and on the gas regime of the plasma torch. It is established that during the plasma spheroidization process, some of the nitrogen leaves the alloy. The loss rate of nitrogen depends on the size of the initial particles.

Keywords

High-nitrogen stainless steel Powder alloys Mechanical alloying Plasma spheroidization Spherical powder 

Notes

Acknowledgements

The work was supported by a Grant from the Russian Science Foundation (Project No. 15-13-00062).

References

  1. 1.
    M.V. Kostina, V.N. Skorobogatykh, T.V. Tykochinskaya, M.S. Nakhabina, V.V. Nemov, I.O. Bannykh, A.E. Korneev, Russ. Metall. 11, 1032 (2010)CrossRefGoogle Scholar
  2. 2.
    O. Bannykh, V. Blinov, E. Lukin, I.O.P. Conf, Ser. Mater. Sci. Eng. 130, 012001 (2016)Google Scholar
  3. 3.
    K.H. Lo, C.H. Shek, J.K.L. Lai, Mater. Sci. Eng. Rep. 65, 39 (2009)CrossRefGoogle Scholar
  4. 4.
    Y.I. Meshcheryakov, A.K. Divakov, N.I. Zigacheva, G.V. Konovalov, B.K. Barakhtin, G.Y. Kalinin, O.V. Fomina, Mater. Phys. Mech. 21, 99 (2014)Google Scholar
  5. 5.
    V.V. Rybin, V.A. Malyshevskij, GYu. Kalinin, Metally 6, 75 (2001)Google Scholar
  6. 6.
    W.E. Frazier, J. Mater. Eng. Perform. 23, 1917 (2014)CrossRefGoogle Scholar
  7. 7.
    T. Wohlers, Wohlers Report 2014: Additive Manufacturing and 3D Printing State of the Industry. Annual Worldwide Progress Report (Wohlers Associates Inc., Colorado, 2014)Google Scholar
  8. 8.
    A. Uriondo, M. Esperon-Miguez, S. Perinpanayagam, Proc. Inst. Mech. Eng. G J. Aer. 229, 2132 (2015)CrossRefGoogle Scholar
  9. 9.
    W. Gao, Y. Zhang, D. Ramanujan, K. Ramani, Y. Chen, C. Williams, C. Wang, Y. Shin, S. Zhang, P. Zavattieri, Comput. Aided Des 69, 65 (2015)CrossRefGoogle Scholar
  10. 10.
    M.M. Cisneros, H.F. Lopez, H. Mancha, E. Rincon, D. Vazquez, M.J. Perez, S.D. De La Torre, Metall. Mater. Trans. A 36, 1309 (2005)Google Scholar
  11. 11.
    M.M. Cisneros, H.F. Lopez, H. Mancha, D. Vazquez, E. Valdes, G. Mendoza, M. Mendez, Metall. Mater. Trans. A 33, 2139 (2002)CrossRefGoogle Scholar
  12. 12.
    A.A. Al-Joubori, C. Suryanarayana, J. Mater. Sci. 52, 1 (2017)CrossRefGoogle Scholar
  13. 13.
    A.A. Popovich, N.G. Razumov, Met. Sci. Heat Treat. 56, 570 (2015)CrossRefGoogle Scholar
  14. 14.
    A.A. Popovich, N.G. Razumov, Adv. Mater. Lett. 5, 683 (2014)CrossRefGoogle Scholar
  15. 15.
    G.A. Dorofeev, I.V. Sapegina, V.I. Lad’yanov, B.E. Pushkarev, E.A. Pechina, D.V. Prokhorov, Phys. Met. Metallogr. 113, 963 (2012)CrossRefGoogle Scholar
  16. 16.
    M.I. Boulos, P. Fauchais, E. Pfender, Thermal Plasmas: Fundamentals and Applications, vol. 1 (Springer, New York, 1994), pp. 33–43CrossRefGoogle Scholar
  17. 17.
    S.G. Zverev, Ph.D. Thesis (Saint-Petersburg State Technical University, Saint-Petersburg, 2002), pp. 49–87Google Scholar
  18. 18.
    S. Kumar, V. Selvarajan, Mater. Charact. 59, 781 (2008)CrossRefGoogle Scholar
  19. 19.
    J. He, L. Bai, H. Jin, F. Yuan, Powder Technol. 302, 288 (2016)CrossRefGoogle Scholar
  20. 20.
    J.-J. Wang, J.-J. Hao, Z.-M. Guo, Y.-M. Wang, Rare Met. 34, 431 (2015)CrossRefGoogle Scholar
  21. 21.
    X. Lu, C. Liu, L. Zhu, X. He, J. Hao, X. Qu, Rare Met. Mater. Eng. 42, 1915 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Nikolay G. Razumov
    • 1
  • Anatoly A. Popovich
    • 1
  • QingSheng Wang
    • 2
  1. 1.Institute of Metallurgy, Mechanical Engineering and TransportPeter the Great Saint-Petersburg Polytechnic UniversitySaint-PetersburgRussia
  2. 2.ENV (Zheijang) New Energy Material Technology Research InstituteChangxing CountryChina

Personalised recommendations