Metals and Materials International

, Volume 24, Issue 2, pp 423–432 | Cite as

Advancement in the Hydrogen Absorbing and Releasing Kinetics of MgH2 by Mixing with Small Percentages of Zn(BH4)2 and Ni

  • Young Jun Kwak
  • Hye Ryoung Park
  • Myoung Youp Song
Article
  • 49 Downloads

Abstract

Zn(BH4)2 made in our former investigation and Ni were mixed with MgH2 to promote the hydrogen absorption and release features of Mg. A 96 w/o MgH2 + 2 w/o Ni + 2 w/o Zn(BH4)2 sample [named MgH2–4NZ] was prepared by milling in a planetary ball mill in a hydrogen atmosphere. The proportion of the additive was small (4 w/o) in order to increase hydrogen absorbing and releasing rates without majorly sacrificing the hydrogen-storage capacity. The hydrogen absorption and release features of the MgH2–4NZ were inspected in detail and compared with those of 99 w/o MgH2 + 1 w/o Zn(BH4)2 [named MgH2–1Z] and 95 w/o MgH2 + 2.5 w/o Ni + 2.5 w/o Zn(BH4)2 [named MgH2–5NZ] samples. The activation of the MgH2–4NZ was not required. The MgH2–4NZ had a useful hydrogen-storage capacity (the quantity of hydrogen absorbed after 60 min) of about 5.5 w/o at the first cycle. At the first cycle, the MgH2–4NZ absorbed 3.84 w/o hydrogen after 5 min and 5.47 w/o hydrogen after 60 min at 593 K in 12 bar hydrogen. The MgH2–4NZ had a higher releasing rate, larger amounts of hydrogen absorbed and released after 60 min, and a better cycling capability than the MgH2–1Z. Staying of Ni (as Mg2Ni) and a larger amount of Zn among particles is believed to have led to the better cycling capability of the MgH2–4NZ.

Keywords

Hydrogen absorbing materials Mechanical milling Hydrogen Thermal analysis MgH2-based alloy 

Notes

Acknowledgements

This research was supported by a Grant (2013 하 A17) from 「Jeonbuk Research and Development」Program funded by Jeonbuk Province.

References

  1. 1.
    T. Nakagawa, T. Ichikawa, Y. Kojima, H. Fujii, Mater. Trans. 48, 556 (2007)CrossRefGoogle Scholar
  2. 2.
    Y. Nakamori, H.-W. Li, K. Kikuchi, M. Aoki, K. Miwa, S. Towata, S. Orimo, J. Alloys Compd. 446–447, 296 (2007)CrossRefGoogle Scholar
  3. 3.
    Y. Nakamori, H.-W. Li, M. Matsuo, K. Miwa, S. Towata, S. Orimo, J. Phys. Chem. Solids 69, 2292 (2008)CrossRefGoogle Scholar
  4. 4.
    Á. Révész, M. Gajdics, T. Spassov, Int. J. Hydrogen Energy 38, 8342 (2013)CrossRefGoogle Scholar
  5. 5.
    J. Zou, S. Long, X. Chen, X. Zeng, W. Ding, Int. J. Hydrogen Energy 40, 1820 (2015)CrossRefGoogle Scholar
  6. 6.
    S. Orimo, K. Ikeda, H. Fujii, Y. Fujikawa, Y. Kitano, K. Yamamoto, Acta Mater. 45, 2271 (1997)CrossRefGoogle Scholar
  7. 7.
    S. Srinivasan, D. Escobar, Y. Goswami, E. Stefanakos, Int. J. Hydrogen Energy 33, 2268 (2008)CrossRefGoogle Scholar
  8. 8.
    S. Srinivasan, D. Escobar, M. Jurczyk, Y. Goswami, E. Stefanakos, J. Alloys Compd. 462, 294 (2008)CrossRefGoogle Scholar
  9. 9.
    Y.J. Kwak, S.N. Kwon, S.H. Lee, I.W. Park, M.Y. Song, Korean J. Met. Mater. 53, 500 (2015)CrossRefGoogle Scholar
  10. 10.
    Y.J. Kwak, S.H. Lee, H.R. Park, M.Y. Song, Korean J. Met. Mater. 51, 607 (2013)CrossRefGoogle Scholar
  11. 11.
    M.Y. Song, S.H. Baek, J.-L. Bobet, J. Song, S.H. Hong, Int. J. Hydrogen Energy 35, 10366 (2010)CrossRefGoogle Scholar
  12. 12.
    M.Y. Song, Y.J. Kwak, S.H. Lee, H.R. Park, Korean J. Met. Mater. 52, 689 (2014)CrossRefGoogle Scholar
  13. 13.
    H.R. Park, Y.J. Kwak, M.Y. Song, Korean J. Met. Mater. 55, 656 (2017)Google Scholar
  14. 14.
    Y.J. Kwak, S.N. Kwon, M.Y. Song, Met. Mater. Int. 21, 971 (2015)CrossRefGoogle Scholar
  15. 15.
    Y.J. Kwak, S.N. Kwon, M.Y. Song, Korean J. Met. Mater. 53, 808 (2015)Google Scholar
  16. 16.
    M.Y. Song, Y.J. Kwak, H.R. Park, Korean J. Met. Mater. 54, 503 (2016)Google Scholar
  17. 17.
    S.-H. Hong, M.Y. Song, Korean J. Met. Mater. 54, 125 (2016)Google Scholar
  18. 18.
    M.Y. Song, Y.J. Kwak, S.H. Lee, H.R. Park, Korean J. Met. Mater. 54, 210 (2016)Google Scholar
  19. 19.
    S.-H. Hong, M.Y. Song, Korean J. Met. Mater. 54, 358 (2016)Google Scholar
  20. 20.
    S.N. Kwon, H.R. Park, M.Y. Song, Korean J. Met. Mater. 54, 510 (2016)CrossRefGoogle Scholar
  21. 21.
    G. Liu, K. Wang, J. Li, Y. Wang, H. Yuan, Int. J. Hydrogen Energy 41, 10786 (2016)CrossRefGoogle Scholar
  22. 22.
    N.N. Sulaiman, N.S. Mustafa, M. Ismail, Dalton Transactions 45, 7085 (2016)CrossRefGoogle Scholar
  23. 23.
    N.N. Sulaiman, M. Ismail, Dalton Trans. 45, 19380 (2016)CrossRefGoogle Scholar
  24. 24.
    Y.J. Kwak, H.R. Park, M.Y. Song, Int. J. Hydrogen Energy 42, 1018 (2017)CrossRefGoogle Scholar
  25. 25.
    N.S. Mustafa, M. Ismail, J. Alloys Compd. 695, 2532 (2017)CrossRefGoogle Scholar
  26. 26.
    N.S. Mustafa, N.N. Sulaiman, M. Ismail, RSC Adv. 6, 110004 (2016)CrossRefGoogle Scholar
  27. 27.
    M.Y. Song, Y.J. Kwak, S.H. Lee, H.R. Park, Met. Mater. Int. 19, 879 (2013)CrossRefGoogle Scholar
  28. 28.
    N.N. Sulaiman, N. Juahir, N.S. Mustafa, F.A. Halim Yap, M. Ismail, J. Energy Chem. 25, 832 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Mao, Z. Guo, X. Yu, H. Liu, Z. Wu, J. Ni, Int. J. Hydrogen Energy 35, 4569 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Young Jun Kwak
    • 1
    • 3
  • Hye Ryoung Park
    • 2
  • Myoung Youp Song
    • 3
  1. 1.Department of Materials Engineering, Graduate SchoolChonbuk National UniversityJeonjuRepublic of Korea
  2. 2.School of Chemical EngineeringChonnam National UniversityGwangjuRepublic of Korea
  3. 3.Division of Advanced Materials Engineering, Hydrogen & Fuel Cell Research Center, Engineering Research InstituteChonbuk National UniversityJeonjuRepublic of Korea

Personalised recommendations