Metals and Materials International

, Volume 24, Issue 2, pp 315–326 | Cite as

Computational Interpretation of the Relation Between Electric Field and the Applied Current for Cathodic Protection Under Different Conductivity Environments

  • Yong-Sang Kim
  • Sang-Jin Ko
  • Sangkyu Lee
  • Jung-Gu Kim


An interpretation of the relation between the electric field and the applied current for cathodic protection is investigated using a boundary element method simulation. Also, a conductivity-difference environment is set for the interface influence. The variation of the potential distribution is increased with the increase of the applied current and the conductivity difference due to the rejection of the current at the interface. In the case of the electric field, the tendencies of the increasing rate and the applied currents are similar, but the interface influence is different according to the directional component and field type (decrease of Ez and increases of Ex and Ey) due to the directional difference between the electric fields. Also, the change tendencies of the electric fields versus the applied current plots are affected by the polarization curve tendency regarding the polarization type (activation and concentration polarizations in the oxygen-reduction and hydrogen-reduction reactions). This study shows that the underwater electric signature is determined by the polarization behavior of the materials.


Metals Corrosion Computer simulation Interface 



This work was supported by the Agency for Defense Development (No. UD150010DD).


  1. 1.
    J.J. Holmes, Reduction of a Ship’s Magnetic Field Signature (Morgan & Claypool Publishers, Williston, 2008), pp. 55–72Google Scholar
  2. 2.
    J.J. Holmes, Modelling a Ship’s Ferromagnetic Signatures, 1st edn. (Morgan & Claypool Publishers, Williston, 2007), pp. 33–48Google Scholar
  3. 3.
    J.J. Holmes, Exploitation of a Ship’s Magnetic Field Signatures, 1st edn. (Morgan & Claypool Publishers, Williston, 2006), pp. 12–22Google Scholar
  4. 4.
    J.C. Hubbard, S.H. Brooks, B.C. Torrance, UDT 64, 480 (1996)Google Scholar
  5. 5.
    R. Donati, J.P. Le Cadre, IRR Proc. Radar Sonar Navig. 149, 221 (2002)CrossRefGoogle Scholar
  6. 6.
    A. Guibert, O. Chadebec, J.L. Coulomb, C. Rannou, IEEE Trans. Magn. 12, 1828 (2009)CrossRefGoogle Scholar
  7. 7.
    J. Wu, S. Xing, C. Liang, L. Lu, Y. Yan, Adv. Eng. Softw. 42, 902 (2001)CrossRefGoogle Scholar
  8. 8.
    M. Fogiel, The Electromagnetics Problem Solver (Research and Education Association, New Jersey, 2000), pp. 77–83Google Scholar
  9. 9.
    E.S. Diaz, R. Adey, J. Baynham, Optimisation of ICCP Systems to Minimise Electric Signatures, MARELEC, Stockholm, Sweden, (2001), pp. 1–17Google Scholar
  10. 10.
    R. Adey, J. Baynham, Predicting Corrosion Related Electrical and Magnetic Fields Using BEM (UDT, 2000)Google Scholar
  11. 11.
    D.E. Santana, R. Adey, Bound. Elem. 24, 1 (2003)Google Scholar
  12. 12.
    M. Verney, S. Bailey, M. Siddal, J. Soc. Underw. Tech. 42, 51 (1999/2000)Google Scholar
  13. 13.
    P. Traverso, E. Canepa, Ocean Eng. 87, 10 (2014)CrossRefGoogle Scholar
  14. 14.
    C. Roder, M.L. Berumen, J. Bouwmeester, E. Papathanassiou, A. Al-Suwailem, C.R. Voolstr, Sci. Rep. 3, 2802 (2013)CrossRefGoogle Scholar
  15. 15.
    A.S. Inan, A.C. Fraser-Smith, O.G. Villard, Radio Sci. 21, 409 (2016)CrossRefGoogle Scholar
  16. 16.
    X.C. Lu, Acoust. Technol. 23, 117 (2004)Google Scholar
  17. 17.
    R.Y. Yue, Z.X. Tian, Ship Sci. Tech. 31, 21 (2009)Google Scholar
  18. 18.
    Y. Ruiyng, H. Ping, Z. Jing, IEEE/OES China Ocean Acoust. 10, 1109 (2016)Google Scholar
  19. 19.
    A. Guibert, O. Chadebec, J.-L. Coulomb, C. Rannou, IEEE T. Magn. 45, 1828 (2009)CrossRefGoogle Scholar
  20. 20.
    B. Grosgogeat, L. Reclaru, M. Lissac, F. Dalard, Biomaterials 20, 933 (1999)CrossRefGoogle Scholar
  21. 21.
    J.-P. Celis, P. Ponthiaux, F. Wenger, Wear 261, 939 (2006)CrossRefGoogle Scholar
  22. 22.
    J.-H. Kim, Y.-S. Kim, J.-G. Kim, Ocean Eng. 115, 149 (2016)CrossRefGoogle Scholar
  23. 23.
    M. Varney, S. Bailey, M. Siddall, Underw. Technol. 24, 51 (1999/2000)Google Scholar
  24. 24.
    H.-J. Chung, C.-S. Yang, G.-W. Jeung, J.-J. Jeon, D.-H. Kim, IEEE Trans. Magn. 47, 1282 (2011)CrossRefGoogle Scholar
  25. 25.
    D.A. Jones, Principle and Prevention of Corrosion, 2nd edn. (Prentice Hall, New Jersey, 1996), pp. 235–248Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Yong-Sang Kim
    • 1
  • Sang-Jin Ko
    • 1
  • Sangkyu Lee
    • 2
  • Jung-Gu Kim
    • 1
  1. 1.School of Advanced Materials Science and EngineeringSungkyunkwan UniversitySuwonRepublic of Korea
  2. 2.The 6th Research and Development InstituteAgency for Defense DevelopmentChangwonRepublic of Korea

Personalised recommendations