Metals and Materials International

, Volume 24, Issue 2, pp 337–350 | Cite as

Morphological, Structural and Optical Evolution of Ag Nanostructures on c-Plane GaN Through the Variation of Deposition Amount and Temperature

  • Mao Sui
  • Ming-Yu Li
  • Puran Pandey
  • Quanzhen Zhang
  • Sundar Kunwar
  • Jihoon Lee


Owing to their tunable properties, Ag nanostructures have been widely adapted in various applications and the morphological control can determine their performance and effectiveness. In this work, we demonstrate the morphological and optical evolution of Ag nanostructures on GaN (0001) by the systematic control of deposition amount at two distinctive annealing temperatures. Based on the Volmer–Weber and coalescence growth models, the nanostructure growth commenced by the thermal solid-state-dewetting evolve in terms of size, density and configuration. At 450 °C, the round-dome shaped Ag nanoparticles (regime I), irregular Ag nano-mounds (regime II) and void-layer structures (regime III) are observed along with the gradually increased deposition amount. As a sharp distinction, the solid state dewetting process occur more radically at 700 °C and also, the Ag sublimation and the effect on the nanostructure formation are observed in a clear regime shift scaled by the deposition amount. Meanwhile, a strong dependency of reflectance spectra evolution on the Ag nanostructure morphology is witnessed for both sets. In particular, Ag dipolar resonance peaks are significantly red-shifted from VIS to NIR regions along with the nanostructure evolution. The reflectance, PL and Raman intensity variation are also observed and discussed based on the evolution of Ag nanostructures.


Ag nanostructures GaN Solid-state-dewetting Deposition amount Temperature variation 



Financial support from the National Research Foundation of Korea (Nos. 2011-0030079 and 2016R1A1A1A05005009), and in part by the research grant of Kwangwoon University in 2017 is gratefully acknowledged.

Supplementary material

12540_2018_33_MOESM1_ESM.docx (9.1 mb)
Supplementary material 1 (DOCX 9341 kb)


  1. 1.
    H. Jinbo, Yu. Yue, B. Jiao, S. Ning, H. Dong, X. Hou, Z. Zhang, W. Zhaoxin, Org. Electron. 31, 234–239 (2016)CrossRefGoogle Scholar
  2. 2.
    I. Lee, J.Y. Park, K. Hong, J.H. Son, S. Kim, J.-L. Lee, Nanoscale 8, 6463–6467 (2016)CrossRefGoogle Scholar
  3. 3.
    K. Ranganathan, D. Wamwangi, N.J. Coville, Sol. Energy 118, 256–266 (2015)CrossRefGoogle Scholar
  4. 4.
    B. Chen, C. Liu, L. Ge, K. Hayashi, Sens. Actuators B 23, 787–792 (2016)CrossRefGoogle Scholar
  5. 5.
    D. Zopf, J. Jatschka, A. Dathe, N. Jahr, W. Fritzsche, O. Stranik, Biosens. Bioelectron. 81, 287–293 (2016)CrossRefGoogle Scholar
  6. 6.
    A. Colombelli, M.G. Manera, A. Taurino, M. Catalano, A. Convertino, R. Rella, Sens. Actuators B 226, 589–597 (2016)CrossRefGoogle Scholar
  7. 7.
    L. Yan, Y. Yan, X. Leilei, R. Ma, F. Jiang, X. Xiaohong, Appl. Surf. Sci. 367, 563–568 (2016)CrossRefGoogle Scholar
  8. 8.
    H.-H. Jeong, A.G. Mark, M. Alarcon-Correa, I. Kim, P. Oswald, T.-C. Lee, P. Fischer, Nat. Commun. 7, 11331 (2015)CrossRefGoogle Scholar
  9. 9.
    Z. Sun, D. Teng, L. Liu, X. Huang, X. Zhang, K. Sun, Y. Wang, N. Chi, G. Wang, IEEE Photonics J. 8, 7904308 (2016)Google Scholar
  10. 10.
    X. Mingsheng, M. Qi, L. Xiao, Q. Zhou, H. Wang, Z. Ji, X. Xiangang, Mater. Express 6, 205–209 (2016)CrossRefGoogle Scholar
  11. 11.
    M.-K. Kwon, J.-Y. Kim, B.-H. Kim, I.-K. Park, C.-Y. Cho, C.C. Byeon, S.-J. Park, Surface-plasmon-enhanced light-emitting diodes. Adv. Mater. 20, 1253–1257 (2008)CrossRefGoogle Scholar
  12. 12.
    H.W. Jang, J.-L. Lee, Appl. Phys. Lett. 85, 5920–5922 (2004)CrossRefGoogle Scholar
  13. 13.
    J.J. Wierer, D.A. Steigerwald, M.R. Krames, J.J. O’Shea, M.J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P.S. Martin, S. Subramanya, W. Götz, N.F. Gardner, R.S. Kern, S.A. Stockman, Appl. Phys. Lett. 78, 3379–3381 (2001)CrossRefGoogle Scholar
  14. 14.
    Y. Ma, W. Li, J. Zeng, M. McKiernan, Z. Xie, Y. Xia, Synthesis of small silver nanocubes in a hydrophobic solvent by introducing oxidative etching with Fe(III) species. J. Mater. Chem. 20, 3586–3589 (2010)CrossRefGoogle Scholar
  15. 15.
    J.M. Buriak, Organometallic chemistry on silicon and germanium surfaces. Chem. Rev. 102, 1271–1308 (2002)CrossRefGoogle Scholar
  16. 16.
    R. Wang, D. Liu, Z. Zuo, Yu. Qian, Z. Feng, H. Liu, X. Xiangang, Surfactantless photochemical growth of Ag nanostructures on GaN epitaxial films with controlled morphologies and their application for SERS. J. Mater. Chem. 22(6), 2410–2418 (2012)CrossRefGoogle Scholar
  17. 17.
    D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, C.C. Yang, Localized surface plasmon-induced emission enhancement of a green light-emitting diode. Nanotechnology 19(34), 345201 (2008)CrossRefGoogle Scholar
  18. 18.
    D. Li, X. Sun, H. Song, Z. Li, Y. Chen, H. Jiang, G. Miao, Realization of a high-performance GaN UV detector by nanoplasmonic enhancement. Adv. Mater. 24(6), 845–849 (2012)CrossRefGoogle Scholar
  19. 19.
    F. Ruffino, M.G. Grimaldi, J. Appl. Phys. 107, 104321 (2010)CrossRefGoogle Scholar
  20. 20.
    J. Ristica, E. Calleja, S. Fernandez-Garrido, L. Cerutti, A. Trampert, U. Jahn, K.H. Ploog, J. Cryst. Growth 310, 4035–4045 (2008)CrossRefGoogle Scholar
  21. 21.
    G. Abadias, L. Simonot, J.J. Colin, A. Michel, S. Camelio, D. Babonneau, Appl. Phys. Lett. 107, 183105 (2015)CrossRefGoogle Scholar
  22. 22.
    R.J. Peláeza, C.N. Afonsoa, M. Skerenb, J. Bulírca, Laser Appl. Surf. Sci. 374, 61–64 (2016)CrossRefGoogle Scholar
  23. 23.
    E. Shaffir, I. Riess, W.D. Kaplan, Acta Mater. 57, 248–256 (2009)CrossRefGoogle Scholar
  24. 24.
    J.-Y. Kwon, T.-S. Yoon, K.-B. Kim, S.-H. Min, J. Appl. Phys. 93, 3270 (2003)CrossRefGoogle Scholar
  25. 25.
    F. Ruffino, M.G. Grimaldi, Phys. Status Solidi A 212, 1662–1684 (2015)CrossRefGoogle Scholar
  26. 26.
    C.M. Müller, R. Spolenak, J. Appl. Phys. 113, 094301 (2013)CrossRefGoogle Scholar
  27. 27.
    D. Wang, P. Schaaf, Phys. Status Solidi A 212, 1544–1551 (2013)CrossRefGoogle Scholar
  28. 28.
    M. Sui, P. Pandey, Ming-Yu. Li, Q. Zhang, S. Kunwar, J. Lee, J. Mater. Sci. (2016). Google Scholar
  29. 29.
    C. Polop, C. Rosiepen, S. Bleikamp, R. Drese, J. Mayer, A. Dimyati, T. Michely, New J. Phys. 9, 74 (2007)CrossRefGoogle Scholar
  30. 30.
    J.M. Zhang, F. Ma, K.W. Xu, Appl. Surf. Sci. 229, 34–42 (2004)CrossRefGoogle Scholar
  31. 31.
    J.F. Muth, J.H. Lee, I.K. Shmagin, R.M. Kolbas, H.C. Casey Jr., B.P. Keller, U.K. Mishra, S.P. DenBaars, Appl. Phys. Lett. 71, 2572 (1997)CrossRefGoogle Scholar
  32. 32.
    C.X. Lian, X.Y. Li, J. Liu, Semicond. Sci. Technol. 19, 417–420 (2004)CrossRefGoogle Scholar
  33. 33.
    C.C. Zheng, S.J. Xu, F. Zhang, J.Q. Ning, D.G. Zhao, H. Yang, C.M. Che, Appl. Phys. Lett. 101, 191102 (2012)CrossRefGoogle Scholar
  34. 34.
    E. Thouti, N. Chander, V. Dutta, V.K. Komarala, J. Opt. 15, 035005 (2013)CrossRefGoogle Scholar
  35. 35.
    U. Kreibig, M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 2013)Google Scholar
  36. 36.
    Paul L. Stiles, Jon A. Dieringer, Nilam C. Shah, Richard P. Van Duyne, Annu. Rev. Anal. Chem. 1, 601–626 (2008)CrossRefGoogle Scholar
  37. 37.
    Md Mijanur Rahman, Nampei Hattori, Xu Yuta Nakagawa, Shiki Yagai Lin, Masatoshi Sakai, Kazuhiro Kudo, Kazunuki Yamamoto, Jpn. J. Appl. Phys. 53, 11 (2014)Google Scholar
  38. 38.
    P.K. Jain, X. Huang, I.H. El-Sayed, M.A. El-Sayed, Plasmonics 2, 107–118 (2007)CrossRefGoogle Scholar
  39. 39.
    S. Peng, J.M. McMahon, G.C. Schatz, S.K. Graya, Y. Sun, PNAS 107, 14530–14534 (2010)CrossRefGoogle Scholar
  40. 40.
    T. Goto, N. Seki, Y. Shirai, T. Ohmi, Jpn. J. Appl. Phys. 50, 015801 (2011)CrossRefGoogle Scholar
  41. 41.
    C.Y. Liu, M.M. Dvoynenko, M.Y. Lai, T.H. Chan, Y.R. Lee, J.-K. Wang, Y.L. Wang, Appl. Phys. Lett. 96, 033109 (2010)CrossRefGoogle Scholar
  42. 42.
    X. Xia, R. Shen, Y. Liu, D. Yang, S. Song, L. Zhao, Z. Shi, X. Li, H. Liang, B. Zhang, D. Guotong, Opt. Mater. Express 2, 38–43 (2011)CrossRefGoogle Scholar
  43. 43.
    Y. Liang, N. Guo, L. Li, R. Li, G. Ji, S. Gan, New J. Chem. 40, 1587–1594 (2016)CrossRefGoogle Scholar
  44. 44.
    Y. Zhao, X. Liu, D.Y. Lei, Y. Chai, Nanoscale 6, 1311–1317 (2014)CrossRefGoogle Scholar
  45. 45.
    S.-i. Nakashima, T. Mitani, M. Tomobe, T. Kato, H. Okumura, AIP Adv. 6, 015207 (2016)CrossRefGoogle Scholar
  46. 46.
    F. Leroy, F. Cheynis, T. Passanante, P. Muller, Phys. Rev. B 88, 035306 (2013)CrossRefGoogle Scholar
  47. 47.
    Ming-Yu. Li, Q. Zhang, P. Pandey, M. Sui, E.-S. Kim, J. Lee, Sci. Rep. 5, 13954 (2015)CrossRefGoogle Scholar
  48. 48.
    L. Zhang, F. Cosandey, R. Persaud, T.E. Madey, Surf. Sci. 439, 73–85 (1999)CrossRefGoogle Scholar
  49. 49.
    W.K. Choi, T.H. Liew, H.G. Chew, F. Zheng, C.V. Thompson, Y. Wang, M.H. Hong, X.D. Wang, L. Li, J. Yun, Small 4, 330–333 (2008)CrossRefGoogle Scholar
  50. 50.
    N. Yoshimura, Vacuum Technology: Practice for Scientific Instruments (Springer, Berlin, 2007), pp. 156–157Google Scholar
  51. 51.
    A. Rath, J.K. Dash, R.R. Juluri, A. Rosenauer, M. Schoewalter, P.V. Satyam, J. Appl. Phys. 111, 064322 (2012)CrossRefGoogle Scholar
  52. 52.
    P. Pandey, M. Sui, Ming-Yu. Li, Q. Zhang, S. Kunwar, W. Jiang, Z.M. Wang, G.J. Salamo, J. Lee, Cryst. Growth Des. 16, 3334–3344 (2016)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Mao Sui
    • 1
  • Ming-Yu Li
    • 1
  • Puran Pandey
    • 1
  • Quanzhen Zhang
    • 1
  • Sundar Kunwar
    • 1
  • Jihoon Lee
    • 1
    • 2
  1. 1.College of Electronics and InformationKwangwoon UniversitySeoulRepublic of Korea
  2. 2.Institute of Nanoscale Science and EngineeringUniversity of ArkansasFayettevilleUSA

Personalised recommendations