Metals and Materials International

, Volume 24, Issue 2, pp 327–336 | Cite as

Effect of Cooling Rate on SCC Susceptibility of β-Processed Ti–6Al–4V Alloy in 0.6M NaCl Solution

  • Soojin Ahn
  • Jiho Park
  • Daeho Jeong
  • Hyokyung Sung
  • Yongnam Kwon
  • Sangshik Kim


The effects of cooling rate on the stress corrosion cracking (SCC) susceptibility of β-processed Ti–6Al–4V (Ti64) alloy, including BA/S specimen with furnace cooling and BQ/S specimen with water quenching, were investigated in 0.6M NaCl solution under various applied potentials using a slow strain rate test technique. It was found that the SCC susceptibility of β-processed Ti64 alloy in aqueous NaCl solution decreased with fast cooling rate, which was particularly substantial under an anodic applied potential. The micrographic and fractographic analyses suggested that the enhancement with fast cooling rate was related to the random orientation of acicular α platelets in BQ/S specimen. Based on the experimental results, the effect of cooling rate on the SCC behavior of β-processed Ti64 alloy in aqueous NaCl solution was discussed.


Ti–6Al–4V SCC Hydrogen Heat treatment Alloys Microstructure 



This work has been supported by the Engineering Research Center (ERC) Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (2011-0030801), and the National Research Foundation of Korea (NRF) grant funded by the Korean Government (NRF-2016H1D2A2916874). This work was also supported by the Industrial Technology Innovation Program (10050561, Forming, Post-treatment and Assembly Manufacturing Technology for Nozzle Fairing of 17,700 lbs Supersonic Engine) funded by the Ministry of Trade, industry and Energy(MI, Korea), and the Fundamental Research Program of the Korea Institute of Materials Science (KIMS).


  1. 1.
    M.J. Donachie, Titanium: A Technical Guide, 2nd edn. (ASM International, Ohio, 2000), p. 5Google Scholar
  2. 2.
    H. Chandler, Heat Treater’s Guide: Practices and Procedures for Nonferrous Alloys (ASM International, Ohio, 1996), p. 459Google Scholar
  3. 3.
    R. Wanhill, S. Barter, Fatigue of Beta Processed and Beta Heat-treated Titanium Alloys (Springer, Berlin, 2011), p. 1Google Scholar
  4. 4.
    S.L. Semiatin, V. Seetharaman, I. Weiss, JOM 39, 33 (1997)CrossRefGoogle Scholar
  5. 5.
    G. Welsch, R. Boyer, E.W. Collings, Materials Properties Handbook: Titanium Alloys (ASM International, Ohio, 1993), p. 484Google Scholar
  6. 6.
    D.H. Jeong, Y.N. Kwon, M. Goto, S.S. Kim, Int. J. Mech. Mater. Eng. 12–1, 1 (2017)CrossRefGoogle Scholar
  7. 7.
    D.H. Jeong, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 22–4, 594 (2016)CrossRefGoogle Scholar
  8. 8.
    D.H. Jeong, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 22–5, 747 (2016)CrossRefGoogle Scholar
  9. 9.
    R.P. Gangloff, B.P. Somerday, Gaseous Hydrogen Embrittlement of Materials in Energy Technologies: The Problem, its Characterisation and Effects on Particular Alloy Classe (Elsevier, Amsterdam, 2012), p. 970CrossRefGoogle Scholar
  10. 10.
    G.R. Yoder, L.A. Cooley, T.W. Crooker, Metall. Mater. Trans. A 9A, 1413 (1978)CrossRefGoogle Scholar
  11. 11.
    F.C. Campbell Jr., Manufacturing Technology for Aerospace Structural Materials (Elsevier, Amsterdam, 2011), p. 152Google Scholar
  12. 12.
    G.R. Yoder, L.A. Cooley, T.W. Crooker, A micromechanistic interpretation of cyclic crack-growth behavior in a beta-annealed Ti–6Al–4V alloy, No. NRL-8048 (Naval Research Lab, Washington, 1976)CrossRefGoogle Scholar
  13. 13.
    W.G. Seo, D.H. Jeong, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 23, 648 (2017)CrossRefGoogle Scholar
  14. 14.
    R. Pederson, Microstructure and Phase Transformation of Ti–6Al–4V (Luleå University of technology, Luleå, 2002)Google Scholar
  15. 15.
    R. Pederson, The Microstructures of Ti–6A1–4V and Ti–6Al–2Sn–4Zr–6Mo and their Relationship to Processing and Properties (Luleå University of technology, Luleå, 2004)Google Scholar
  16. 16.
    G. Lütjering, J.C. Williams, Titanium (Springer, Berlin, 2013), p. 218Google Scholar
  17. 17.
    M. Peters, J. Hemptenmacher, J. Kumpfert, C. Leyens, Structure and properties of titanium and titanium alloys, in Titanium and Titanium Alloys, vol. 1, ed. by C. Leyens, M. Peters (Wiley, New Jersey, 1982), p. 1Google Scholar
  18. 18.
    M.J. Donachiel Jr., Heat Treating Titanium and Its Alloys. Heat Treating Progress (ASM International, Ohio, 1993), p. 49Google Scholar
  19. 19.
    M.J. Donachie, Titanium: A Technical Guide, 2nd edn. (ASM International, Ohio, 2000), p. 58Google Scholar
  20. 20.
    X.G. Zhang, J. Vereecken, Corrosion 46(2), 136 (1990)CrossRefGoogle Scholar
  21. 21.
    G.V. Voort, Metallographic Preparation of Titanium and its alloys (Buehler, Illinois, 2015), p. 2Google Scholar
  22. 22.
    D.H. Jeong, J.H. Park, S.J. Ahn, H.K. Sung, Y.N. Kwon, S.S. Kim, Met. Mater. Int. 24–1, 101 (2017)Google Scholar
  23. 23.
    ASTM Standard G129, Standard Practice for Slow Strain Rate Testing to Evaluate the Susceptibility of Metallic Materials to Environmentally Assisted Cracking (Annual book of ASTM standards, 03.02, West Conshohocken, 2000)Google Scholar
  24. 24.
    Y.S. Yoon, H.Y. Ha, T.H. Lee, S.S. Kim, Corros. Sci. 80, 28 (2014)CrossRefGoogle Scholar
  25. 25.
    Y.S. Yoon, H.Y. Ha, T.H. Lee, S.S. Kim, Corros. Sci. 88, 337 (2013)CrossRefGoogle Scholar
  26. 26.
    H.Y. Ha, W.G. Seo, J.Y. Park, T.H. Lee, S.S. Kim, Mater. Charact. 119, 200 (2016)CrossRefGoogle Scholar
  27. 27.
    D.H. Jeong, W.J. Jung, Y.J. Kim, M. Goto, S.S. Kim, Met. Mater. Int. 21(5), 785 (2017)CrossRefGoogle Scholar
  28. 28.
    D.B. Dawson, R.M. Pelloux, Metall. Mater. Trans. A 5, 723 (1974)Google Scholar
  29. 29.
    R.P. Wei, Fracture Mechanics: Integration of Mechanics, Materials Science and Chemistry (Cambridge University Press, Cambridge, 2010), p. 173CrossRefGoogle Scholar
  30. 30.
    T.F. Broderick, A.G. Jackson, H. Jones, F.H. Froes, Metall. Mater. Trans. A 16A, 1985 (1951)Google Scholar
  31. 31.
    M.R. Louthan, J.A. Donovan, D.E. Rawl, Corrosion 29(3), 108 (1973)CrossRefGoogle Scholar
  32. 32.
    E. Tal-Gutelmacher, D. Eliezer, JOM 57, 46 (2005)CrossRefGoogle Scholar
  33. 33.
    H.G. Nelson, D.P. Williams, J.E. Stein, Metall. Mater. Trans. A 3, 469 (1972)Google Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Soojin Ahn
    • 1
  • Jiho Park
    • 1
  • Daeho Jeong
    • 1
  • Hyokyung Sung
    • 1
  • Yongnam Kwon
    • 2
  • Sangshik Kim
    • 1
  1. 1.Department of Materials Engineering and Convergence Technology, ReCAPTGyeongsang National UniversityJinjuRepublic of Korea
  2. 2.Department of Materials ProcessingKorea Institute of Materials ScienceChangwonRepublic of Korea

Personalised recommendations