Metals and Materials International

, Volume 24, Issue 2, pp 415–421 | Cite as

Thermoelectric Properties of Cu-doped Bi2−xSbxTe3 Prepared by Encapsulated Melting and Hot Pressing

  • Woo-Jin Jung
  • Il-Ho Kim


P-type Bi2−xSbxTe3:Cum (x = 1.5–1.7 and m = 0.002–0.003) solid solutions were synthesized using encapsulated melting and were consolidated using hot pressing. The effects of Sb substitution and Cu doping on the charge transport and thermoelectric properties were examined. The lattice constants decreased with increasing Sb and Cu contents. As the amount of Sb substitution and Cu doping was increased, the electrical conductivity increased, and the Seebeck coefficient decreased owing to the increase in the carrier concentration. All specimens exhibited degenerate semiconductor characteristics and positive Hall and Seebeck coefficients, indicating p-type conduction. The increased Sb substitution caused a shift in the onset temperature of the intrinsic transition and bipolar conduction to higher temperatures. The electronic thermal conductivity increased with increasing Sb and Cu contents owing to the increase in the carrier concentration, while the lattice thermal conductivity slightly decreased due to alloy scattering. A maximum figure of merit, ZTmax = 1.25, was achieved at 373 K for Bi0.4Sb1.6Te3:Cu0.003.


Thermoelectric Bismuth telluride Copper doping Encapsulated melting Hot pressing 



This study was supported by the Civil-Military Technology Cooperation Program, Republic of Korea.


  1. 1.
    H.J. Goldsmid, Thermoelectric Refrigeration (Plenum, New York, 1964), p. 43CrossRefGoogle Scholar
  2. 2.
    H. Scherrer, S. Scherrer, in Handbook of Thermoelectrics, chap. 19, ed. by D.M. Rowe (CRC Press, London, 1995)Google Scholar
  3. 3.
    H.J. Goldsmid, J. Appl. Phys. 32, 2198 (1961)CrossRefGoogle Scholar
  4. 4.
    L.V. Prokof’eva, D.A. Pshenai-Severin, P.P. Konstantinov, A.A. Shabaldin, Semiconductors 43, 1155 (2009)CrossRefGoogle Scholar
  5. 5.
    D. Vasilevskiy, A. Sami, J.M. Simard, R. Masut, J. Appl. Phys. 92, 2610 (2002)CrossRefGoogle Scholar
  6. 6.
    S.Y. Wang, W.J. Xie, H. Li, X.F. Tang, Intermetallics 19, 1024 (2011)CrossRefGoogle Scholar
  7. 7.
    G.R. Miller, C.Y. Li, J. Phys. Chem. Sol. 26, 173 (1965)CrossRefGoogle Scholar
  8. 8.
    J. Horak, K. Cermak, L. Koudelka, J. Phys. Chem. Sol. 47, 805 (1986)CrossRefGoogle Scholar
  9. 9.
    Z. Stary, J. Horak, M. Stordeur, M. Stolzer, J. Phys. Chem. Sol. 49, 29 (1988)CrossRefGoogle Scholar
  10. 10.
    A. Hashibon, C. Elsasser, Phys. Rev. B 84, 144117 (2011)CrossRefGoogle Scholar
  11. 11.
    S. Chen, K.F. Cai, F.Y. Li, S.Z. Chen, J. Electron. Mater. 43, 1966 (2014)CrossRefGoogle Scholar
  12. 12.
    R.O. Carlson, J. Phys. Chem. Sol. 13, 65 (1960)CrossRefGoogle Scholar
  13. 13.
    T.A. McCarthy, H.J. Goldsmid, J. Phys. D Appl. Phys. 3, 697 (1970)CrossRefGoogle Scholar
  14. 14.
    W.S. Liu, Q. Zhang, Y. Lan, S. Chen, X. Yan, Q. Zhang, H. Wang, D. Wang, G. Chen, Z. Ren, Adv. Energy Mater. 1, 577 (2011)CrossRefGoogle Scholar
  15. 15.
    M.K. Han, K. Ahn, H.J. Kim, J.S. Rhyee, S.J. Kim, J. Mater. Chem. 21, 11365 (2011)CrossRefGoogle Scholar
  16. 16.
    J.L. Cui, L.D. Mao, W. Yang, X.B. Xu, D.Y. Chen, W.J. Xiu, J. Sol. Stat. Chem. 180, 3583 (2007)CrossRefGoogle Scholar
  17. 17.
    H. Li, H. Jing, Y. Han, Y. Xu, G.Q. Lu, L. Xu, J. Alloys Compd. 576, 369 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.S. Lim, M.S. Song, S.I. Lee, T.H. An, C. Park, W.S. Seo, J. Alloys Compd. 687, 320 (2016)CrossRefGoogle Scholar
  19. 19.
    Z. Huang, X. Dai, Y. Yu, C. Zhou, F. Zu, Scr. Mater. 118, 19 (2016)CrossRefGoogle Scholar
  20. 20.
    W.J. Jung, I.H. Kim, J. Korean Phys. Soc. 69, 1328 (2016)CrossRefGoogle Scholar
  21. 21.
    J.H. Son, M.W. Oh, B.S. Kim, S.D. Park, B.K. Min, M.H. Kim, H.W. Lee, J. Alloys Compd. 566, 168 (2013)CrossRefGoogle Scholar
  22. 22.
    G.J. Snyder, E.S. Toberer, Nature Mater. 7, 105 (2008)CrossRefGoogle Scholar
  23. 23.
    H. Kohler, Phys. Stat. Sol. B 74, 591 (1976)CrossRefGoogle Scholar
  24. 24.
    H.T. Langhammer, M. Stordeur, H. Sobotta, V. Riede, Phys. Stat. Sol. B 123, K47 (1984)CrossRefGoogle Scholar
  25. 25.
    L. Hu, H. Gao, X. Liu, H. Xie, J. Shen, T. Zhu, X. Zhao, J. Mater. Chem. 22, 16484 (2012)CrossRefGoogle Scholar
  26. 26.
    H. Cailat, A. Borshchevsky, J.P. Fleurial, J. Appl. Phys. 80, 4442 (1996)CrossRefGoogle Scholar
  27. 27.
    H.S. Kim, Z.M. Gibbs, Y. Tang, H. Wang, G.J. Snyder, APL Mater. 3, 041506 (2015)CrossRefGoogle Scholar
  28. 28.
    S.K. Bux, J.P. Fleurial, R.B. Kaner, Chem. Commun. 46, 8311 (2010)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringKorea National University of TransportationChungjuRepublic of Korea

Personalised recommendations