Advertisement

Metals and Materials International

, Volume 24, Issue 2, pp 255–263 | Cite as

Effect of Heat Treatments on Microstructures and Tensile Properties of Cu–3 wt%Ag–0.5 wt%Zr Alloy

  • Gang Chen
  • ChuanJie Wang
  • Ying Zhang
  • Cen Yi
  • Peng Zhang
Article
  • 126 Downloads

Abstract

The microstructures and tensile properties of Cu–3 wt%Ag–0.5 wt%Zr alloy sheets under different aging treatments are investigated in this research. As one kind of precipitate, Ag nanoparticles with coherent orientation relationship with matrix precipitate. However, after the peak-age point, most of Ag nanoparticles grow into short rod shape with the interface translating to semi-coherent, which leads to the lower strength of over-aging sample. The yield strength is estimated by considering solid solute, grain boundary and precipitation strengthening mechanisms. The result shows that the Ag precipitates provide the main strengthening role. Then a constitutive equation representing the evolution of dislocation density with plastic strain is built by considering work-hardening behavior coming from shearable and non-shearable precipitates which is mainly the particles containing Zr. The flow stress contributed by shearable particle hardening is higher than that of non-shearable one. Due to the coarsening of grain boundary precipitates and low rate of damage accumulation of these non-shearable particles, the micro-cracks nucleate easily at grain boundary which leads to intergranular fracture.

Keywords

Alloy Aging Precipitation Tensile test Plastic 

Notes

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China (Grant No.51575129) and China Postdoctoral Science Foundation (No. 2017T100238).

References

  1. 1.
    P.S. Chen, J.H. Sanders, Y.K. Liaw, F. Zimmermann, Ductility degradation of vacuum-plasma-sprayed NARloy-Z at elevated temperatures. Mater. Sci. Eng. A 199, 145–152 (1995)CrossRefGoogle Scholar
  2. 2.
    C. Verdy, Ipsé—LERMPS. Ph.D. thesis. Belfort, France, 279p (1998)Google Scholar
  3. 3.
    S.I. Hong, M.A. Hill, Mechanical stability and electrical conductivity of Cu-Ag filamentary microcomposites. Mater. Sci. Eng. A 264, 151–158 (1999)CrossRefGoogle Scholar
  4. 4.
    J. Singh, G. Jerman, R. Poorman, B.N. Bhat, A.K. Kuruvilla, Mechanical properties and microstructural stability of wrought, laser, and electron beam glazed NARloy-Z alloy at elevated temperatures. J. Mater. Sci. 32, 3891–3903 (1997)CrossRefGoogle Scholar
  5. 5.
    S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, K.M. George, Enhanced strength in Cu–Ag–Zr Alloy by combination of cold working and aging. J. Mater. Eng. Perform. 23, 1458–1464 (2014)CrossRefGoogle Scholar
  6. 6.
    F. Bittner, S. Yin, A. Kauffmann, J. Freudenberger, H. Klauß, G. Korpala, R. Kawalla, W. Schillinger, L. Schultz, Dynamic recrystallization and precipitation behavior of high strength and highly conducting Cu–Ag–Zr alloys. Mater. Sci. Eng. A 597, 139–147 (2014)CrossRefGoogle Scholar
  7. 7.
    S.C. Krishna, N.K. Gangwar, A.K. Jha, B. Pant, K.M. George, Properties and strengthening mechanisms in cold-rolled and aged Cu–3Ag–0.5Zr alloy. Metallogr. Microstruct. Anal. 3, 323–327 (2014)CrossRefGoogle Scholar
  8. 8.
    R.G. Hoagland, R.J. Kurtz, C.H.H. Jr, Slip resistance of interfaces and the strength of metallic multilayer composites. Scripta Mater. 50, 775–779 (2004)CrossRefGoogle Scholar
  9. 9.
    D.H. Kang, I.H. Jung, Critical thermodynamic evaluation and optimization of the Ag–Zr, Cu–Zr and Ag–Cu–Zr systems and its applications to amorphous Cu–Zr–Ag alloys. Intermetallics 18, 815–833 (2010)CrossRefGoogle Scholar
  10. 10.
    X.C. He, H. Wang, H.S. Liu, Z.P. Jin, Thermodynamic description of the Cu–Ag–Zr system. Calphad. 30, 367–374 (2006)CrossRefGoogle Scholar
  11. 11.
    H.C. Pan, F.S. Pan, J. Peng, J. Gou, A.T. Tang, L. Wu, H.W. Dong, High-conductivity binary Mg–Zn sheet processed by cold rolling and subsequent aging. J. Alloys Compd. 578, 493–500 (2013)CrossRefGoogle Scholar
  12. 12.
    E. Orowan, Symposium on internal stresses in metals and alloys (Institute of Metals, London, 1948)Google Scholar
  13. 13.
    A. Simar, Y. Brechet, B. de Meester, A. Denquin, T. Pardoen, Sequential modeling of local precipitation, strength and strain hardening in friction stir welds of an aluminum alloy 6005A-T6. Acta Mater. 55, 6133–6143 (2007)CrossRefGoogle Scholar
  14. 14.
    M.R. Ahmadi, E. Povoden-Karadeniz, K.I. Öksüz, A. Falahati, E. Kozeschnik, A model for precipitation strengthening in multi-particle systems. Comput. Mater. Sci. 91, 173–186 (2014)CrossRefGoogle Scholar
  15. 15.
    E. Abe, Y. Kawamura, K. Hayashi, A. Inoue, Long-period ordered structure in a high-strength nanocrystalline Mg–1 at%Zn–2 at%Y alloy studied by atomic-resolution Z-contrast STEM. Acta Mater. 50, 3845–3857 (2002)CrossRefGoogle Scholar
  16. 16.
    Y. Estrin, in Unified Constitutive Laws of Plastic Deformation, ed. by A.S. Krausz, K. Krausz (Academic Press, New York, 1996), pp. 69–106CrossRefGoogle Scholar
  17. 17.
    V.M.J. Sharma, K.S. Kumar, B.N. Rao, S.D. Pathak, Studies on the work-hardening behavior of AA2219 under different aging treatments. Metall. Mater. Trans. A 40A, 3186–3195 (2009)CrossRefGoogle Scholar
  18. 18.
    S.K. Shaha, F. Czerwinski, W. Kasprzak, D.L. Chen, Work hardening and texture during compression deformation of the Al–Si–Cu–Mg alloy modified with V, Zr and Ti. J. Alloys Compd. 593, 290–299 (2014)CrossRefGoogle Scholar
  19. 19.
    W.J. Poole, N. Charras, An experimental study on the effect of damage on the stress–strain behaviour for Al–Si model composites. Mater. Sci. Eng. A 405, 300–308 (2005)CrossRefGoogle Scholar
  20. 20.
    U.F. Kocks, H. Mecking, Physics and phenomenology of strain hardening: the FCC case. Prog. Mater. Sci. 48, 171–273 (2003)CrossRefGoogle Scholar
  21. 21.
    W.F. Hosford, Mechanical Behavior of Materials (Cambridge University Press, New York, 2005)CrossRefGoogle Scholar
  22. 22.
    N. Afrin, D.L. Chen, X. Cao, M. Jahazi, Strain hardening behavior of a friction stir welded magnesium alloy. Scripta Mater. 57, 1004–1007 (2007)CrossRefGoogle Scholar
  23. 23.
    D.J. Lahaie, J.D. Embury, F.W. Zok, Damage accumulation and mechanical properties of particle-reinforced metal-matrix composites during hydrostatic extrusion. Compos. Sci. Technol. 64, 1539–1549 (2004)CrossRefGoogle Scholar
  24. 24.
    M.T. Kiser, F.W. Zok, D.S. Wilkinson, Plastic flow and fracture of a particulate metal matrix composite. Acta Mater. 44, 3465–3476 (1996)CrossRefGoogle Scholar
  25. 25.
    Y.J. Lang, G.X. Zhou, L.G. Hou, J.S. Zhang, L.Z. Zhuang, Significantly enhanced the ductility of the fine-grained Al–Zn–Mg–Cu alloy by strain-induced precipitation. Mater. Des. 88, 625–631 (2015)CrossRefGoogle Scholar
  26. 26.
    D. Dumont, A. Deschamps, Y. Brechet, On the relationship between microstructure, strength and toughness in AA7050 aluminum alloy. Mater. Sci. Eng. A 356, 326–336 (2003)CrossRefGoogle Scholar
  27. 27.
    P. Zhang, J.Y. Zhang, J. Li, G. Liu, K. Wu, Y.Q. Wang, J. Sun, Microstructural evolution, mechanical properties and deformation mechanisms of nanocrystalline Cu thin films alloyed with Zr. Acta Mater. 76, 221–237 (2014)CrossRefGoogle Scholar
  28. 28.
    S.J. Sun, M. Pugh, Properties of thermomechanically processed dual-phase steels containing fibrous martensite. Mater. Sci. Eng. A 335, 298–308 (2002)CrossRefGoogle Scholar
  29. 29.
    G.M. Ludtka, D.E. Laughlin, The influence of microstructure and strength on the fracture mode and toughness of 7XXX series aluminum alloys. Metal. Trans. A 13, 411–425 (1982)CrossRefGoogle Scholar
  30. 30.
    P. Gordon, H.H. An, The mechanisms of crack initiation and crack propagation in metal-induced embrittlement of metals. Metal. Trans. A. 13, 457–472 (1982)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  • Gang Chen
    • 1
  • ChuanJie Wang
    • 1
  • Ying Zhang
    • 2
  • Cen Yi
    • 1
  • Peng Zhang
    • 1
  1. 1.School of Materials Science and EngineeringHarbin Institute of Technology at WeihaiWeihaiChina
  2. 2.School of Materials EngineeringShanghai University of Engineering ScienceShanghaiChina

Personalised recommendations