Metals and Materials International

, Volume 24, Issue 2, pp 351–361 | Cite as

Identification of Dynamic Flow Stress Curves Using the Virtual Fields Methods: Theoretical Feasibility Analysis

  • Dohyun Leem
  • Jin-Hwan Kim
  • Frédéric Barlat
  • Jung Han Song
  • Myoung-Gyu Lee


An inverse approach based on the virtual fields method (VFM) is presented to identify the material hardening parameters under dynamic deformation. This dynamic-VFM (D-VFM) method does not require load information for the parameter identification. Instead, it utilizes acceleration fields in a specimen’s gage region. To investigate the feasibility of the proposed inverse approach for dynamic deformation, the virtual experiments using dynamic finite element simulations were conducted. The simulation could provide all the necessary data for the identification such as displacement, strain, and acceleration fields. The accuracy of the identification results was evaluated by changing several parameters such as specimen geometry, velocity, and traction boundary conditions. The analysis clearly shows that the D-VFM which utilizes acceleration fields can be a good alternative to the conventional identification procedure that uses load information. Also, it was found that proper deformation conditions are required for generating sufficient acceleration fields during dynamic deformation to enhance the identification accuracy with the D-VFM.


Dynamic deformation Numerical simulation Virtual fields method Acceleration fields 



The authors are grateful to POSCO (Pohang Iron and Steel Company) for financial support and MGL appreciate the support from the National Research Foundation of Korea (NRF-2017R1D1A1B03030454).


  1. 1.
    J. Cao, H. Yao, A. Karafillis, M.C. Boyce, Int. J. Plast 16, 1105 (2000)CrossRefGoogle Scholar
  2. 2.
    K.J. Kim, D. Kim, S.H. Choi, K. Chung, K.S. Shin, F. Barlat, K.H. Oh, J.R. Youn, J. Mater. Process. Technol. 139, 1 (2003)CrossRefGoogle Scholar
  3. 3.
    D. Kim, H. Kim, J.H. Kim, M.G. Lee, K.J. Kim, F. Barlat, Y. Lee, K. Chung, Int. J. Plast 75, 63 (2015)CrossRefGoogle Scholar
  4. 4.
    H.J. Bong, J. Lee, J.H. Kim, F. Barlat, M.G. Lee, Int. J. Hydrog. Energy 42, 10 (2017)CrossRefGoogle Scholar
  5. 5.
    T. Nicholas, Exp. Mech. 21, 177 (1981)CrossRefGoogle Scholar
  6. 6.
    H. Huh, J.H. Lim, S.H. Park, Int. J. Auto. Technol. 10, 195 (2009)CrossRefGoogle Scholar
  7. 7.
    T.K. Tran, D.J. Kim, J. Adv. Concr. Technol. 10, 126 (2012)CrossRefGoogle Scholar
  8. 8.
    F. Pierron, M. Grédiac, The Virtual Fields Method: Extracting Constitutive Mechanical Parameters from Full-Field Deformation Measurements (Springer, New York, 2012)CrossRefGoogle Scholar
  9. 9.
    F. Pierron, M.A. Sutton, V. Tiwari, Exp. Mech. 51, 537 (2011)CrossRefGoogle Scholar
  10. 10.
    G. Le Louëdec, F. Pierron, M.A. Sutton, C. Siviour, A.P. Reynolds, J. Dyn. Behav. Mater 1, 176 (2015)CrossRefGoogle Scholar
  11. 11.
    J.H. Kim, G.A. Lee, M.G. Lee, Int. J. Adv. Manuf. Technol. 16, 145 (2015)Google Scholar
  12. 12.
    M. Grédiac, E. Toussaint, F. Pierron, Int. J. Solids Struct. 39, 2691 (2002)CrossRefGoogle Scholar
  13. 13.
    M.A. Sutton, X. Deng, J. Liu, L. Yang, Exp. Mech. 36, 99 (1996)CrossRefGoogle Scholar
  14. 14.
    F. Dunne, N. Petrinic, Introduction to Computational Plasticity (Oxford University Press, Oxford, 2005)Google Scholar
  15. 15.
    ISO 26203-2:2011, Metallic Materials—Tensile Testing at High Strain Rates—Part 2: Servo-Hydraulic and Other Test SystemsGoogle Scholar
  16. 16.
    J.B. Kwon, H. Huh, J.S. Kim, Exp. Mech. 54, 987 (2014)CrossRefGoogle Scholar
  17. 17.
    T. Kuwabara, K. Yoshida, K. Narihara, S. Takahashi, Int. J. Plast. 21, 101 (2005)CrossRefGoogle Scholar
  18. 18.
    Y. Chen, A.H. Clausen, O.S. Hopperstad, M. Langseth, Int. J. Solids Struct. 46, 3825 (2009)CrossRefGoogle Scholar
  19. 19.
    N. Moser, D. Pritchet, H. Ren, K.F. Ehmann, J. Cao, J. Manuf. Sci. E.-T ASME 138, 091007 (2016)CrossRefGoogle Scholar
  20. 20.
    J.H. Kim, D. Kim, H.N. Han, F. Barlat, M.G. Lee, Mat. Sci. Eng. A 559, 222 (2013)CrossRefGoogle Scholar

Copyright information

© The Korean Institute of Metals and Materials 2018

Authors and Affiliations

  1. 1.POSTECHGraduate Institute of Ferrous TechnologyPohangRepublic of Korea
  2. 2.Department of Mechanical EngineeringNorthwestern UniversityEvanstonUnited States
  3. 3.Metal Forming Technology R&D GroupKorea Institute of Industrial TechnologyIncheonRepublic of Korea
  4. 4.Department of Materials Science and EngineeringSeoul National UniversitySeoulRepublic of Korea

Personalised recommendations