Skip to main content
Log in

Analysis of Compression and Permeability Behavior of Porous Ti6Al4V by Computed Microtomography

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Porous materials were developed as a good alternative to replace different bones in the human body as they improve osseointegration, tissue ingrowth and simulate the mechanical properties of human bones. Such characteristics highly depend on the pore features and volume fraction. Samples with a pore volume fraction between 16 and 60% and a pore size distribution of 100–500 µm were analyzed by computed microtomography. 3D images acquisition was performed at 10 µm pixel resolution, which permitted to observe the complete sample. Features like size, shape, orientation, connectivity and pore coordination were determined from the 3D image analysis. Compression behavior was evaluated by interrupted compression testing and, after that, new 3D images were acquired. In order to evaluate permeability, numerical simulations of flow throughout the 3D images were carried out by using Avizo® software. It was found that shape and pore size distribution was similar in all samples, showing good distribution of the pore formers inside the matrix. Full connectivity of pores was obtained with 32% volume fraction and above, and the coordination number follows the Artz model. The pores showed a radial orientation, which induces anisotropy in the flow properties. The compression showed two different behaviors, pore closing and pore coalescence. Values of permeability match with those reported for bones as well as the anisotropy in the radial and vertical directions. It is concluded that the sample with 60 vol% of pores could be consider to be used for bone implants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. X. Wang, S. Xu, S. Zhou, W. Xu, M. Leary, P. Choong, M. Qian, M. Brandt, Y.M. Xie, Biomaterials (2016). https://doi.org/10.1016/j.biomaterials.2016.01.012

    Google Scholar 

  2. L.E. Murr, S.M. Gaytan, E. Martinez, F. Medina, R.B. Wicker, Int. J. Biomater. (2012). https://doi.org/10.1155/2012/245727

    Google Scholar 

  3. Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2005.11.025

    Google Scholar 

  4. B.R. Levine, S. Sporer, R.A. Poggie, C.J. Della Valle, J.J. Jacobs, Biomaterials (2006). https://doi.org/10.1016/j.biomaterials.2006.04.041

    Google Scholar 

  5. F.A. España, V.K. Balla, S. Bose, A. Bandyopadhyay, Mater. Sci. Eng. C (2010). https://doi.org/10.1016/j.msec.2009.08.006

    Google Scholar 

  6. A. Bansiddhi, T.D. Sargeant, S.I. Stupp, D.C. Dunand, Acta Biomater. (2008). https://doi.org/10.1016/j.actbio.2008.02.009

    Google Scholar 

  7. J. Ballarre, I. Manjubala, W.H. Schreiner, J.C. Orellano, P. Fratzl, S. Ceré, Acta Biomater. (2010). https://doi.org/10.1016/j.actbio.2009.10.015

    Google Scholar 

  8. S.F.S. Shirazi, S. Gharehkhani, M. Mehrali, H. Yarmand, H.S.C. Metselaar, N.A. Kadri, N.A.A. Osman, Sci. Technol. Adv. Mater. (2015). https://doi.org/10.1088/1468-6996/16/3/033502

    Google Scholar 

  9. B. Arifvianto, J. Zhou, Materials (2014). https://doi.org/10.3390/ma7053588

    Google Scholar 

  10. L. Reig, V. Amigó, D.J. Busquets, J.A. Calero, J. Mater. Process. Technol. (2012). https://doi.org/10.1016/j.jmatprotec.2011.06.026

    Google Scholar 

  11. Y. Torres, J.A. Rodríguez, S. Arias, M. Echeverry, S. Robledo, V. Amigo, J.J. Pavón, J. Mater. Sci. (2012). https://doi.org/10.1007/s10853-012-6586-9

    Google Scholar 

  12. J.L. Cabezas-Villa, L. Olmos, D. Bouvard, J. Lemus-Ruiz, O. Jiménez, J. Mater. Res. (2018). https://doi.org/10.1557/jmr.2018.35

    Google Scholar 

  13. J. Jakubowicz, G. Adamek, M. Dewidar, J. Porous Mater. (2013). https://doi.org/10.1007/s10934-013-9696-0

    Google Scholar 

  14. H. Matsuno, A. Yokoyama, F. Watari, M. Uo, T. Kawasaki, Biomaterials (2001). https://doi.org/10.1016/S0142-9612(00)00275-1

    Google Scholar 

  15. J.R. Woodard, A.J. Hilldore, S.K. Lan, C.J. Park, A.W. Morgan, J.A.C. Eurell, S.G. Clark, M.B. Wheeler, R.D. Jamison, A.J.W. Johnson, Biomaterials (2007). https://doi.org/10.1016/j.biomaterials.2006.08.021

    Google Scholar 

  16. H. Montazerian, E. Davoodi, M. Asadi-Eydivand, J. Kadkhodapour, M. Solati-Hashjin, Mater. Des. (2017). https://doi.org/10.1016/j.matdes.2017.04.009

    Google Scholar 

  17. V. Karageorgiou, D. Kaplan, Biomaterials (2005). https://doi.org/10.1016/j.biomaterials.2005.02.002

    Google Scholar 

  18. S.M. Kalantari, H. Arabi, S. Mirdamadi, S.A. Mirsalehi, J. Mech. Behav. Biomed. Mater. (2015). https://doi.org/10.1016/j.jmbbm.2015.04.015

    Google Scholar 

  19. Y. Torres, S. Lascano, J. Bris, J. Pavón, J.A. Rodriguez, Mater. Sci. Eng. C. (2014). https://doi.org/10.1016/j.msec.2013.11.036

    Google Scholar 

  20. Z. Zhang, D. Jones, S. Yue, P.D. Lee, J.R. Jones, C.J. Sutcliffe, E. Jones, Mater. Sci. Eng. C (2013). https://doi.org/10.1016/j.msec.2013.05.050

    Google Scholar 

  21. R. Singh, P.D. Lee, T.C. Lindley, R.J. Dashwood, E. Ferrie, T. Imwinkelried, Acta Biomater. (2009). https://doi.org/10.1016/j.actbio.2008.06.014

    Google Scholar 

  22. M.C. Varley, S. Neelakantan, T.W. Clyne, J. Dean, R.A. Brooks, A.E. Markaki, Acta Biomater. (2016). https://doi.org/10.1016/j.actbio.2016.01.041

    Google Scholar 

  23. M.R. Dias, P.R. Fernandes, J.M. Guedes, S.J. Hollister, J. Biomech. (2012). https://doi.org/10.1016/j.jbiomech.2012.01.019

    Google Scholar 

  24. M.D.M. Innocentini, R.K. Faleiros, R. Pisani Jr., I. Thijs, J. Luyten, S. Mullens, J. Porous Mater. (2010). https://doi.org/10.1007/s10934-009-9331-2

    Google Scholar 

  25. E.A. Nauman, K.E. Fong, T.M. Keaveny, Ann. Biomed. Eng. (1999). https://doi.org/10.1114/1.195

    Google Scholar 

  26. L. Olmos, T. Takahashi, D. Bouvard, C.L. Martin, L. Salvo, D. Bellet, M. Di Michiel, Philos. Mag. (2009). https://doi.org/10.1080/14786430903150225

    Google Scholar 

  27. C.L. Lin, J.D. Miller, Powder Technol. (2005). https://doi.org/10.1016/j.powtec.2005.04.031

    Google Scholar 

  28. L. Olmos, C.L. Martin, D. Bouvard, D. Bellet, M. Di Michiel, J. Am. Ceram. Soc. (2009). https://doi.org/10.1111/j.1551-2916.2009.03037.x

    Google Scholar 

  29. L. Olmos, D. Bouvard, L. Salvo, D. Bellet, M. Di Michiel, J. Mater. Sci. (2014). https://doi.org/10.1007/s10853-014-8117-3

    Google Scholar 

  30. S.A. Saltykov, Stereometrische Metallographie Metallurgizdat (VEB, Leipzig, 1974)

    Google Scholar 

  31. A. Marmottant, L. Salvo, C.L. Martin, A. Mortensen, J. Eur. Ceram. Soc. (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.03.041

    Google Scholar 

  32. A. Vagnon, J.P. Rivière, J.M. Missiaen, D. Bellet, M. Di Michiel, C. Josserond, D. Bouvard, Acta Mater. (2008). https://doi.org/10.1016/j.actamat.2007.11.008

    Google Scholar 

  33. X.Y. Cheng, S.J. Li, L.E. Murr, Z.B. Zhang, Y.L. Hao, R. Yang, F. Medina, R.B. Wicker, J. Mech. Behav. Biomed. Mater. (2012). https://doi.org/10.1016/j.jmbbm.2012.10.005

    Google Scholar 

  34. D. Bouvard, F.F. Lange, Acta Metall. Mater. (1991). https://doi.org/10.1016/0956-7151(91)90041-X

    Google Scholar 

  35. J.X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps, B. Thierry, J. Mater. Sci. Mater. Med. (1999). https://doi.org/10.1023/A:1008973120918

    Google Scholar 

  36. R.A. Perez, G. Mestres, Mater. Sci. Eng. C (2016). https://doi.org/10.1016/j.msec.2015.12.087

    Google Scholar 

  37. D.J. Griffon, M.R. Sedighi, D.V. Schaeffer, J.A. Eurell, A.L. Johnson, Acta Biomater. (2006). https://doi.org/10.1016/j.actbio.2005.12.007

    Google Scholar 

  38. E. Arzt, Acta Metall. (1982). https://doi.org/10.1016/0001-6160(82)90028-1

    Google Scholar 

  39. L.J. Gibson, M.F. Ashby, Cellular Solids: Structure and Properties, 2nd edn. (Cambridge University Press, Cambridge, 1999), p. 175

    Google Scholar 

  40. R. Singh, P.D. Lee, T.C. Lindley, C. Kohlhauser, C. Hellmich, M. Bram, T. Imwinkelried, R.J. Dashwood, Acta Biomater. (2010). https://doi.org/10.1016/j.actbio.2009.11.032

    Google Scholar 

  41. I. Farias, L. Olmos, O. Jimenez, H.J. Vergara-Hernández, D. Bouvard, P. Gárnica, M. Flores, Mater. Res. Ibero. Am. J. (2017). https://doi.org/10.1590/1980-5373-mr-2017-0510

    Google Scholar 

  42. M.J. Grimm, J.L. Williams, J. Biomech. (1997). https://doi.org/10.1016/S0021-9290(97)00016-X

    Google Scholar 

  43. F.J. O’Brien, B.A. Harley, M.A. Waller, I.V. Yannas, L.J. Gibson, P.J. Prendergast, Technol. Health Care 15(1), 3 (2007)

    Google Scholar 

  44. C.M. Murphy, M.G. Haugh, F.J. O’Brien, Biomaterials (2010). https://doi.org/10.1016/j.biomaterials.2009.09.063

    Google Scholar 

  45. K. Kieswetter, Z. Schwartz, D.D. Dean, B.D. Boyan, Crit. Rev. Oral Biol. Med. (1996). https://doi.org/10.1177/10454411960070040301

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank to the CIC of the UMSNH and ECOS M15P01 for the financial support and the facilities provided for the development of this study. We would also like to thank the Laboratory “LUMIR” Geosciences of the UNAM, Juriquilla, for the 3D image acquisition and processing.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis Olmos.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Olmos, L., Bouvard, D., Cabezas-Villa, J.L. et al. Analysis of Compression and Permeability Behavior of Porous Ti6Al4V by Computed Microtomography. Met. Mater. Int. 25, 669–682 (2019). https://doi.org/10.1007/s12540-018-00223-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00223-w

Keywords

Navigation