Skip to main content
Log in

Effect of Prestrain on Hydrogen Embrittlement Susceptibility of EH 36 Steels Using In Situ Slow-Strain-Rate Testing

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Hydrogen can provide pure and clean energy; however, to use it as an energy source, facilities such as hydrogen carriers and recharging stations need to be constructed. Structural steels are affected by hydrogen embrittlement (HE), and their susceptibility to this needs to be investigated prior to their use in construction. Most structural steels are normally fabricated using thermomechanical controlled processing, which produces a large dislocation density to increase strength. This study investigated the prestrain effect on HE susceptibility of EH 36 steels using thermal desorption spectroscopy (TDS) and in situ slow-strain-rate testing. Hydrogen was electrochemically charged into specimens, and the reversible hydrogen content and that relating to trap sites were measured using TDS. With an increase in prestrain, there was increase in the diffusible hydrogen content; furthermore, with hydrogen charging, there was a drastic reduction in total elongation with an increase in prestrain. In addition, there was an increase in HE susceptibility with an increase in prestrain compared to when an air condition was employed. Specifically, there was an abrupt increase in HE sensitivity at a prestrain value between 10 and 15%; strain hardening was more dominant below a prestrain value of 10%; and HE was more dominant above a prestrain value of 15% for EH 36 steels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. C. Kim, W. Kim, Y. Kho, Met. Mater. Int. 8, 197 (2002)

    Article  Google Scholar 

  2. H. Ji, I.J. Park, S.M. Lee, Y.K. Lee, J. Alloys Compd. 598, 205 (2014)

    Article  Google Scholar 

  3. T. Zhang, W. Zhao, T. Li, Y. Zhao, Q. Deng, Y. Wang, W. Jiang, Corros. Sci. 131, 104 (2018)

    Article  Google Scholar 

  4. L. Zhang, W. Cao, K. Lu, Z. Wang, Y. Xing, Y. Du, M. Lu, Int. J. Hydrog. Energy 42, 3389 (2017)

    Article  Google Scholar 

  5. I.M. Gadala, M. Abdel Wahab, A. Alfantazi, Mater. Des. 97, 287 (2016)

    Article  Google Scholar 

  6. D. Kuang, Y.F. Cheng, Corros. Sci. 99, 249 (2015)

    Article  Google Scholar 

  7. Q. Liu, B. Irwanto, A. Atrens, Mater. Sci. Eng. A 617, 200 (2014)

    Article  Google Scholar 

  8. E. Villalba, A. Atrens, Eng. Fail. Anal. 16, 164 (2009)

    Article  Google Scholar 

  9. E. Villalba, A. Atrens, Eng. Fail. Anal. 15, 617 (2008)

    Article  Google Scholar 

  10. C. Park, N. Kang, S. Liu, Corros. Sci. 128, 33 (2017)

    Article  Google Scholar 

  11. H.J. Kang, J.S. Yoo, J.T. Park, S.T. Ahn, N. Kang, K.-M. Cho, Mater. Sci. Eng. A 543, 6 (2012)

    Article  Google Scholar 

  12. J.B. Lee, N. Kang, J.T. Park, S.T. Ahn, Y. Do Park, I.D. Choi, K.R. Kim, K.M. Cho, Mater. Chem. Phys. 129, 365 (2011)

    Article  Google Scholar 

  13. C. Park, N. Kang, M. Kim, S. Liu, Mater. Lett. 235, 193 (2019)

    Article  Google Scholar 

  14. J.A. Donovan, Metall. Trans. A 7, 1677 (1976)

    Article  Google Scholar 

  15. M. Koyama, H. Springer, S.V. Merzlikin, K. Tsuzaki, E. Akiyama, D. Raabe, Int. J. Hydrog. Energy 39, 4634 (2014)

    Article  Google Scholar 

  16. X. Li, J. Zhang, Y. Wang, B. Li, P. Zhang, X. Song, Mater. Sci. Eng. A 641, 45 (2015)

    Article  Google Scholar 

  17. J. Sojka, V. Vodárek, I. Schindler, C. Ly, M. Jérôme, P. Váňová, N. Ruscassier, A. Wenglorzová, Corros. Sci. 53, 2575 (2011)

    Article  Google Scholar 

  18. L.P.M. Santos, M. Béreš, I.N. Bastos, S.S.M. Tavares, H.F.G. Abreu, M.J. Gomes da Silva, Corros. Sci. 101, 12 (2015)

    Article  Google Scholar 

  19. M. Koyama, E. Akiyama, T. Sawaguchi, K. Ogawa, I.V. Kireeva, Y.I. Chumlyakov, K. Tsuzaki, Corros. Sci. 75, 345 (2013)

    Article  Google Scholar 

  20. A. Clair, M. Foucault, O. Calonne, Y. Lacroute, L. Markey, M. Salazar, V. Vignal, E. Finot, Acta Mater. 59, 3116 (2011)

    Article  Google Scholar 

  21. E. Ju, D. Suh, H.K.D.H. Bhadeshia, Comput. Mater. Sci. 79, 36 (2013)

    Article  Google Scholar 

  22. P. Antoine, S. Vandeputte, J.-B. Vogt, ISIJ Int. 45, 399 (2005)

    Article  Google Scholar 

  23. P.S. De, A. Kundu, P.C. Chakraborti, Mater. Des. 57, 87 (2014)

    Article  Google Scholar 

  24. J. Pal’a, O. Stupakov, J. Bydžovský, I. Tomáš, V. Novák, J. Magn. Magn. Mater. 310, 57 (2007)

    Article  Google Scholar 

  25. Q.Z. Chen, B.J. Duggan, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 35A, 3423 (2004)

    Article  Google Scholar 

  26. E. Tal-Gutelmacher, D. Eliezer, E. Abramov, Mater. Sci. Eng., A 445–446, 625 (2007)

    Article  Google Scholar 

  27. A.H.M. Krom, A.D. Bakker, Metall. Mater. Trans. B Process Metall. Mater. Process. Sci. 31, 1475 (2000)

    Article  Google Scholar 

  28. J.P. Hirth, Metall. Trans. A 11, 861 (1980)

    Article  Google Scholar 

  29. D. Pérez Escobar, T. Depover, L. Duprez, K. Verbeken, M. Verhaege, Acta Mater. 60, 2593 (2012)

    Article  Google Scholar 

  30. C. Hurley, F. Martin, L. Marchetti, J. Chêne, C. Blanc, E. Andrieu, Int. J. Hydrog. Energy 40, 3402 (2015)

    Article  Google Scholar 

  31. D. Pérez Escobar, T. Depover, E. Wallaert, L. Duprez, M. Verhaege, K. Verbeken, Corros. Sci. 65, 199 (2012)

    Article  Google Scholar 

  32. M. Wang, E. Akiyama, K. Tsuzaki, Corros. Sci. 49, 4081 (2007)

    Article  Google Scholar 

  33. J. Zhao, Z. Jiang, C.S. Lee, Corros. Sci. 82, 380 (2014)

    Article  Google Scholar 

  34. W.Y. Choo, J.Y. Lee, Metall. Trans. A 13, 135 (1982)

    Article  Google Scholar 

  35. A.J. Kumnick, H.H. Johnson, Acta Metall. 28, 33 (1980)

    Article  Google Scholar 

  36. M. Koyama, C. Cem, E. Akiyama, K. Tsuzaki, Acta Mater. 70, 174 (2014)

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) funded by the Ministry of Education (Grant No. NRF-2016R1D1A1B03933994), and the World Class 300 Project R&D (S2482209) of the MOTIE and MSS (Korea).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Namhyun Kang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, C., Kang, N., Liu, S. et al. Effect of Prestrain on Hydrogen Embrittlement Susceptibility of EH 36 Steels Using In Situ Slow-Strain-Rate Testing. Met. Mater. Int. 25, 584–593 (2019). https://doi.org/10.1007/s12540-018-00221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00221-y

Keywords

Navigation