Skip to main content
Log in

Analysis of Distortion Mechanism of a Cold Work Tool Steel During Quenching and Deep Cryogenic Treatment

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The microstructure distribution and distortion behavior of a cold work tool steel cylindrical specimen with keyway after quenching (QT) and deep cryogenic treatment (DCT) were evaluated in detail. Furthermore, from the viewpoints of thermal and volumetric strains, an attempt was made to reveal its distortion mechanism during QT and DCT. The results suggest that DCT can effectively improve the dimensional stability of specimen and eliminate the distortion caused by QT. During the QT and DCT processes, the bending direction and the curvature change of specimen are closely associated with the competition between the thermal strain induced by thermal contraction and the volumetric strain caused by martensite transformation. After DCT, the average thermal and volumetric strains of specimen are respectively about − 0.0051 mm/mm and 0.0049 mm/mm, which are decreased by about 100% and increased by around 25% compared with that of QT, respectively. During QT, the distortion behavior of specimen is governed primarily by the volumetric strain and it mainly undergoes an expansion deformation. While, during DCT, the distortion behavior of specimen is dominated by the thermal strain and it primarily encounters a contraction deformation. However, compared with the expansion deformation during QT, the contraction deformation of specimen during DCT is much more significant, which further proves that DCT is feasible to improve the dimensional stability of specimen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. J.R. Cho, W.J. Kang, M.G. Kim, J.H. Lee, Y.S. Lee, W.B. Bae, J. Mater. Process. Technol. 153–154, 476–481 (2004)

    Article  Google Scholar 

  2. S.J. Lee, Y.K. Lee, Acta Mater. 56, 1482–1490 (2008)

    Article  Google Scholar 

  3. A. Sugianto, M. Narazaki, M. Kogawara, S.Y. Kim, S. Kubota, J. Mater. Eng. Perform. 19, 194–206 (2010)

    Article  Google Scholar 

  4. M. Preciado, P.M. Bravo, J.M. Alegre, J. Mater. Process. Technol. 176, 41–44 (2006)

    Article  Google Scholar 

  5. F.J. Da Silva, S.D. Franco, Á.R. Machado, E.O. Ezugwu, A.M. Souza Jr., Wear 261, 674–685 (2006)

    Article  Google Scholar 

  6. V. Leskovsek, B. Ule, Heat Treat. Met. 29, 72–76 (2002)

    Google Scholar 

  7. H. Li, W. Tong, J. Cui, H. Zhang, L. Chen, L. Zuo, Mater. Sci. Eng. A 662, 356–362 (2016)

    Article  Google Scholar 

  8. C.H. Surberg, P. Stratton, K. Lingenhöle, Cryogenics 48, 42–47 (2008)

    Article  Google Scholar 

  9. M. Villa, K. Pantleon, M.A.J. Somers, Acta Mater. 65, 383–392 (2014)

    Article  Google Scholar 

  10. M. Araghchi, H. Mansouri, R. Vafaei, Y. Guo, Mater. Sci. Eng. A 689, 48–52 (2017)

    Article  Google Scholar 

  11. T. Sonar, S. Lomte, C. Gogte, V. Balasubramanian, Procedia Manuf. 20, 113–118 (2018)

    Article  Google Scholar 

  12. M. Jung, M. Kang, Y.K. Lee, Acta Mater. 60, 525–536 (2012)

    Article  Google Scholar 

  13. D.K. Ju, W.M. Zhang, Y. Zhang, Mater. Sci. Eng. A 438–440, 246–250 (2006)

    Article  Google Scholar 

  14. A. Sugianto, M. Narazaki, M. Kogawara, A. Shirayori, S.Y. Kim, S. Kubota, J. Mater. Process. Technol. 209, 3597–3609 (2009)

    Article  Google Scholar 

  15. H.H. Bok, J.W. Choi, F. Barlat, D.W. Suh, M.G. Lee, Int. J. Plast. 58, 154–183 (2014)

    Article  Google Scholar 

  16. D.N. Collins, Heat Treat. Met. 23, 40–42 (1996)

    Google Scholar 

  17. D. Das, A.K. Dutta, V. Toppo, K.K. Ray, Mater. Manuf. Process. 22, 474–480 (2007)

    Article  Google Scholar 

  18. S. Zhirafar, A. Rezaeian, M. Pugh, J. Mater. Process. Technol. 186, 298–303 (2007)

    Article  Google Scholar 

  19. V.G. Gavriljuk, W. Theisen, V.V. Sirosh, E.V. Polshin, A. Kortmann, G.S. Mogilny, Y.N. Petrov, Y.V. Tarusin, Acta Mater. 61, 1705–1715 (2013)

    Article  Google Scholar 

  20. S.H. Li, M.G. Xiao, G.M. Ye, K.Y. Zhao, M.S. Yang, Mater. Sci. Eng. A 732, 167–177 (2018)

    Article  Google Scholar 

  21. L.C.F. Canale, G.E. Totten, Int. J. Mater. Prod. Technol. 24, 4–52 (2005)

    Article  Google Scholar 

  22. K. Arimoto, S. Yamanaka, M. Narazaki, K. Funatani, Int. J. Microstruct. Mater. Prop. 4, 168–186 (2009)

    Google Scholar 

  23. J.W. Li, L.L. Tang, S.H. Li, X.C. Wu, Mater. Des. 47, 653–666 (2013)

    Article  Google Scholar 

  24. J.W. Li, Y. Feng, H.B. Zhang, N. Min, X.C. Wu, J. Mater. Eng. Perform. 23, 4237–4250 (2014)

    Article  Google Scholar 

  25. C. Şimşir, C.H. Gür, Comput. Mater. Sci. 44, 588–600 (2008)

    Article  Google Scholar 

  26. D.J. Kamody, Adv. Mater. Process. 154, 215–218 (1998)

    Google Scholar 

Download references

Acknowledgements

This work is supported by the National Key Research and Development Program of China (Grant Nos. 2016YFB0300400 and 2016YFB0300404).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Junwan Li or Yongan Min.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Min, Y., Wang, P. et al. Analysis of Distortion Mechanism of a Cold Work Tool Steel During Quenching and Deep Cryogenic Treatment. Met. Mater. Int. 25, 546–558 (2019). https://doi.org/10.1007/s12540-018-00220-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00220-z

Keywords

Navigation