Skip to main content
Log in

Microstructure Evolution of High-Alloyed Al–Zn–Mg–Cu–Zr Alloy Containing Trace Amount of Sc During Homogenization

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Microstructure evolution of a new high-alloyed Al–Zn–Mg–Cu–Zr–Sc aluminium alloy during two-stage homogenization process was investigated by use of scanning electron microscope, transition electron microscope and high resolution transition electron microscope. The results indicate that the morphology and chemical composition of Al3(Sc, Zr) particles formed in the first stage were greatly affected by heating temperature. With the increase of heating temperature, the morphology of Al3(Sc, Zr) particles transform from cuboidal with evident faceting to spheroidal due to improved Zr diffusivity. More Zr atoms enrich in the interface of precipitate/matrix forming a thin layer. Moreover, the mean diameter of precipitates increases a little bit with the increase of heating temperature, showing very restricted coarsening rate and high thermal stability of Al3(Sc, Zr) particles. After an appropriate second stage heat treatment (474 °C × 48 h), the intermetallic formed in the solidification process could dissolve sufficiently and Al3(Sc, Zr) particles still keep very good coherency with Al matrix without abnormal growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. E.M. Savitsky, V.F. Terehova, I.V. Burov, in Proceedings of the Fourth Conference on Rare Earth Research, ed. by L. Eyring (Phoenix, Arizona, 1965), p. 409

    Google Scholar 

  2. V.I. Elagin, V.V. Zakharov, T.D. Rostova, Metals Sci. Heat Treat. 34, 37 (1992)

    Article  Google Scholar 

  3. K.A. Gschneidner, F.W. Calderwood, Bull. Alloy Phase Diagr. 10, 34 (1989)

    Article  Google Scholar 

  4. A.F. Norman, P.B. Prangnell, R.S. McEwen, Acta Mater. 46, 5715 (1998)

    Article  Google Scholar 

  5. V.G. Davydov, V.I. Elagin, V.V. Zakharov, T.D. Rostova, Metal Sci. Heat Treat. 38, 347 (1996)

    Article  Google Scholar 

  6. M. Schöbel, P. Pongratz, H.P. Degischer, Acta Mater. 60, 4247 (2012)

    Article  Google Scholar 

  7. J.H. Li, B. Oberdorfer, S. Wurster, P. Schumacher, J. Mater. Sci. 49, 5961 (2014)

    Article  Google Scholar 

  8. L.M. Wu, W.H. Wang, Y.F. Hsu, S. Trong, J. Alloys Compd. 456, 163 (2008)

    Article  Google Scholar 

  9. S.I. Fujikawa, Defect Diffus. Forum. 143–147, 115 (1997)

    Article  Google Scholar 

  10. W. Lefebvre, F. Danoix, H. Hallem, B. Forbord, A. Bostel, K. Marthinsen, J. Alloys Compd. 470, 107 (2009)

    Article  Google Scholar 

  11. C. Fuller, J. Murray, D. Seidman, Acta Mater. 53, 5401 (2005)

    Article  Google Scholar 

  12. C. Fuller, D. Seidman, Acta Mater. 53, 5415 (2005)

    Article  Google Scholar 

  13. Z.B. He, Z.M. Yin, S. Lin, Y. Deng, B.C. Shang, X. Zhou, J. Rare Earths 28, 641 (2010)

    Article  Google Scholar 

  14. X. Huang, Q.L. Pan, B. Li, Z.M. Liu, Z.Q. Huang, Z.M. Yin, J. Alloys Compd. 629, 197 (2015)

    Article  Google Scholar 

  15. B. Nie, Z.M. Yin, D.P. Zhu, Y.Y. Peng, F. Jiang, J.W. Huang, J. Cent, South Univ. 14, 452 (2007)

    Article  Google Scholar 

  16. Y.W. Riddle, T.H. Sanders, Metall. Mater. Trans. A 35, 341 (2004)

    Article  Google Scholar 

  17. A. Tolley, V. Radmilovic, U. Dahmen, Scr. Mater. 52, 621 (2005)

    Article  Google Scholar 

  18. T. Warner, Mater. Sci. Forum 519–521, 1271 (2006)

    Article  Google Scholar 

  19. K. Hirano, S. Fujikawa, J. Nucl. Mater. 69–70, 564 (1978)

    Article  Google Scholar 

  20. O.N. Senkov, M.R. Shagiev, S.V. Senkova, D.B. Miracle, Acta Mater. 56, 3723 (2008)

    Article  Google Scholar 

  21. R. Wagner, R. Kampmann, P. Voorhees, in Phase Transformation in Materials, ed. by G. Kostorz (Wiley, New York, 2001), p. 309

    Google Scholar 

  22. A.P. Sutton, R.W. Balluffi, Interfaces in Crystalline Materials (Oxford University Press, Oxford, 1996), pp. 45–56

    Google Scholar 

  23. E.A. Marquis, D.N. Seidman, Acta Mater. 49, 1909 (2001)

    Article  Google Scholar 

  24. B. Forbord, W. Lefebvre, F. Danoix, H. Hallem, K. Marthinsen, Scr. Mater. 51, 333 (2004)

    Article  Google Scholar 

  25. Y. Harada, D.C. Dunand, Mater. Sci. Eng. A 329–331, 686 (2002)

    Article  Google Scholar 

  26. Y. Harada, D.C. Dunand, Scr. Mater. 48, 219 (2003)

    Article  Google Scholar 

  27. I.M. Lifshitz, V.V. Slyozov, J. Phys. Chem. Solids 19, 35 (1961)

    Article  Google Scholar 

  28. A.D. Brailsford, P. Wynblatt, Acta Metall. 27, 489 (1979)

    Article  Google Scholar 

  29. A.M. Ges, O. Fornaro, H.A. Palacio, Mater. Sci. Eng. A 458, 96 (2007)

    Article  Google Scholar 

  30. C.S. Tsao, C.Y. Chen, T.Y. Kuo, T.L. Lin, M.S. Yu, Mater. Sci. Eng. A 363, 228 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Key R&D Program of China (No. 2016YFB0300903), and National Key Basic Research Program of China (973 Program, No.2012CB723900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baiqing Xiong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, Z., Xiong, B. et al. Microstructure Evolution of High-Alloyed Al–Zn–Mg–Cu–Zr Alloy Containing Trace Amount of Sc During Homogenization. Met. Mater. Int. 25, 697–704 (2019). https://doi.org/10.1007/s12540-018-00210-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-018-00210-1

Keywords

Navigation