Skip to main content
Log in

Modeling the diffusion-driven growth of a pre-existing gas bubble in molten tin

  • Published:
Metals and Materials International Aims and scope Submit manuscript

An Erratum to this article was published on 06 May 2016

Abstract

Finite element method is utilized to solve the diffusion equation and model the diffusion driven growth of a pre-existing spherical gas bubble in molten tin at the solder/substrate interface for reflow time of 120 s and temperature of 250 °C. The gibbs free energy change required for determining the equilibrium concentration at liquid solder/gas bubble boundary was calculated using the thermodynamic polynomial coefficients. The rate of change of radius, as function of concentration flux, is calculated using the lagrangian mesh update methodology. With an initial diameter of 20 μm, the bubble growth is calculated as a function of contact angle. When the wetting angle is varied from a value of 30° to 135°, the numerical calculation has yielded the final sizes for the bubble to change from 62.87 μm to 82.8 μm respectively. The effect of wetting transition in the growth of bubble was studied by the in-situ observation of bubble dynamics through synchrotron radiation imaging technique. The scanning electron microscopy images of the morphologies of intermetallic compounds influenced by growing bubble in Sn/Cu solder joint and bubble pictures obtained through synchrotron radiation are utilized to get the experimental size of the bubble. The mean experimental bubble diameter has been obtained as 76.39 μm. The growing bubble inhibits the growth of intermetallic compound at its vicinity and thereby reduces the strength of solder joints.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. L Lewis, C. O. Ndiaya, and J. R.Wilcox, IPC APEX EXPO2012 Tech. Conf. Proc., p.747, IPC-Association Connecting Electronic Industries, San Diego, California, USA (2012).

    Google Scholar 

  2. R. F. Aspandiar, J. Surf. Mt. Technol. 19, 28 (2006).

    Google Scholar 

  3. W. B. O’Hara and N.-C, Lee, Solder. Surf. Mt. Technol. 7-3, 44 (1995).

    Article  Google Scholar 

  4. S. Lee, H. M. Zhou, and D. F. Baldwin, Modelling Simul. Mater. Sci. Eng. 18, 065005 (2010).

    Article  Google Scholar 

  5. M. Theriault, J. Uner, and A. Rahn, Handbook of Lead-Free Solder Technology for Microelectronic Assemblies (eds. K. J. Puttlitz and K. A. Stalter), pp.15(1-22), C. R. C. Press (2004).

  6. V. Lyakhovsky, S. Hurwitz, and O. Navon, Bull Volcanol. 58, 19 (1996).

    Article  Google Scholar 

  7. J. Fradera and S. Cuesta-Lopez, Fusion Eng. Des. 88, 3215 (2013).

    Article  Google Scholar 

  8. L. Qu, H. T. Ma, H. J. Zhao, A. Kunwar, and N. Zhao, Appl. Surf. Sci. 305, 133 (2014).

    Article  Google Scholar 

  9. S. Karagadde, S. Sundarraj, and P. Dutta, Scripta Mater. 61, 216 (2009).

    Article  Google Scholar 

  10. Salome Team, Salome: The Open Source Integration Platform for Numerical Simulation, http://www.salome-platform.org (accessed September 23, 2014).

  11. A. Ribes and C. Caremoli, 31st Annual International Computer Software and Applications Conference (COMPSAC 2007), p.553, IEEE Computer Society (2007).

    Google Scholar 

  12. E. M. Sacris and N. A. D. Parlee, Metall. Trans. 1, 3377 (1970).

    Google Scholar 

  13. N. Zhao, X. M. Pan, D. Q. Yu, H. T. Ma, and L. Wang, J. Electron. Mater. 38, 828 (2009).

    Article  Google Scholar 

  14. T. Gancarz, W. Gasior, and H. Henein, Int. J. Thermophys. 34, 250 (2013).

    Article  Google Scholar 

  15. T. Gancarz, Z. Moser, W. Gasior, J. Pstrus, and H. Henein, Int. J. Thermophys. 32, 1210 ( 2011).

  16. X. Hu, Y. Wang, L. Guo, and Z. Cao, Advances in Condensed Matter Physics, 2014, 970891 (2014).

    Article  Google Scholar 

  17. R. Sasikumar, M. J. Walker, S. Savithri, and S. Sundarraj, Modelling Simul. Mater. Sci. Eng. 16, 035009 (2008).

    Article  Google Scholar 

  18. G. R. Jiang, Y. X. Li, and Y. Liu, Trans. Nonferrous Met. Soc. China 21, 1130 (2011).

    Article  Google Scholar 

  19. A. K. Khurana, H. Chen, and C. G. Wall, Chem. Eng. Comm. 165, 199 (1998).

    Article  Google Scholar 

  20. J. O. Suh, K. N. Tu, and N. Tamura, JOM, 63 (2006).

    Google Scholar 

  21. S. Xu, S. Wu, Y. Mao, P. An, and P. Gao, China Foundry 3, 275 (2006).

    Google Scholar 

  22. W. C. Gardiner Jr. (Ed), Combustion Chemistry, pp.455–473, Springer, New York, USA (1984).

    Book  Google Scholar 

  23. A. Burcat, Prof. Burcat’s Thermodynamic Data, http://garfield. chem.elte.hu/Burcat/burcat.html (accessed April 21, 2014).

  24. D. Goodwin, Cantera: Chemical Kinetics Software Package. California Institute for Technology - Caltech, www.cantera.org (accessed August 27, 2013).

  25. Elmer Team at CSC-IT Center for Science Ltd., Elmer, https:// www.csc.fi/web/elmer/elmer (accessed January 5, 014).

  26. E. Jarvinen, P. Raback, M. Lyly, and J.-P. Salenius, Med. Eng. Phys. 30, 917 (2008).

    Article  Google Scholar 

  27. J. Ahrens, B. Geveci, and C. Law, Visualization Handbook (eds. C. D. Hansen and C. R. Johnson), p.717, Elsevier (2005).

  28. U. Ayachit, The ParaView Guide: A Parallel Visualization Application, pp.131–212, Kitware (2015).

    Google Scholar 

  29. M. Ramiasa, J. Ralston, R. Fetzer, and R. Sedev, Advances in Colloid and Interface Science 206, 275 (2014).

    Article  Google Scholar 

  30. D Bonn, J. Eggers, J. Endekeu, J. Meunier, and E. Rolley, Rev. Mod. Phys. 81, 739 (2009).

    Article  Google Scholar 

  31. D. Ertas and M. Kardar, Phys. Rev. E 49, R2532-1(1994).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haitao Ma.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s12540-016-0005-8.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kunwar, A., Ma, H., Sun, J. et al. Modeling the diffusion-driven growth of a pre-existing gas bubble in molten tin. Met. Mater. Int. 21, 962–970 (2015). https://doi.org/10.1007/s12540-015-4528-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-015-4528-1

Keywords

Navigation