Skip to main content
Log in

Microstructure evolution and erosion-corrosion resistance of amorphous Ni-P coatings

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

Amorphous Ni-P coatings with 7.8 wt% P were electrodeposited successfully from an electrolytic bath containing 15 g/L H3PO3. Its microstructure evolution by heat treatment and erosion-corrosion resistance are investigated in this paper. From room temperature to 500 °C, there were three exothermic crystalline phases of Ni5P2, Ni3P and Ni precipitated from the amorphous base. The microstructure evolution of the amorphous Ni-P deposits follows the sequence of amorphous, amorphous-noncrystalline, (Ni5P2 + Ni3P), then (Ni5P2 + Ni3P + Ni) with increasing heat treatment temperature. The mass loss rate of amorphous Ni-P coatings is approximately 14 mg/h and the synergism of erosion-corrosion was larger than half of the total mass loss at an impingement velocity of 8.37 m/s under saline-sand slurry. The erosion-corrosion resistance of amorphous Ni-P coatings can be enhanced obviously by heat treatment because of the elevated hardness and corrosion resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Zhou, G. Zhao, and H. Zhang, Trans. Nonferrous Met. Soc. China 21, 1407 (2011).

    Article  Google Scholar 

  2. Y. Yang and Y. F. Cheng, Surf. Coat. Technol. 205, 3198 (2011).

    Article  CAS  Google Scholar 

  3. H. Huang, S. Chung, S. Pan, and W. Tsai, C. Lin, Surf. Coat. Technol. 205, 2097 (2010).

    Article  CAS  Google Scholar 

  4. K. Hou, M. Jeng, and M. Ger, Wear 262, 833 (2007).

    Article  CAS  Google Scholar 

  5. D. B. Lewis and G. W. Marshall, Surf. Coat. Technol. 78, 150 (1996).

    Article  CAS  Google Scholar 

  6. E. Bredael, B. Blanpain, J. P. Celis, and J. R. Roos, J. Electrochem. Soc. 141, 294 (1994).

    Article  CAS  Google Scholar 

  7. K. G. Keong, W. Sha, and S. Malinov, J. Alloys Compd. 334, 192 (2002).

    Article  CAS  Google Scholar 

  8. J. C. Huang, J. P. Chu, and J. S. C. Jang, Intermetallics 17, 973 (2009).

    Article  CAS  Google Scholar 

  9. A. H. Whitehead, H. Simunkova, P. Lammel, J. Wosik, N. Zhang, and B. Gollas, Wear 270, 695 (2011).

    Article  CAS  Google Scholar 

  10. X. Yuan, D. Sun, H. Yu, and H. Meng, Appl. Surf. Sci. 255, 3613 (2009).

    Article  CAS  Google Scholar 

  11. C. S. Lin, C. Y. Lee, F. J. Chen, and W. C. Li, J. Electrochem. Soc. 152, C370 (2005).

    Article  CAS  Google Scholar 

  12. Y. Zheng, Z. Yao, X. Wei, and W. Ke, Wear 186–187, 555 (1995).

    Article  Google Scholar 

  13. D. López, J. P. Congote, J. R. Cano, A. Toro, and A. P. Tschiptschin, Wear 259, 118 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiulin Ji.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ji, X., Jiang, S., Li, H. et al. Microstructure evolution and erosion-corrosion resistance of amorphous Ni-P coatings. Met. Mater. Int. 18, 655–660 (2012). https://doi.org/10.1007/s12540-012-4013-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-012-4013-z

Key words

Navigation