Wavelet Transform and Deep Convolutional Neural Network-Based Smart Healthcare System for Gastrointestinal Disease Detection

Abstract

This work presents a smart healthcare system for the detection of various abnormalities present in the gastrointestinal (GI) region with the help of time–frequency analysis and convolutional neural network. In this regard, the KVASIR V2 dataset comprising of eight classes of GI-tract images such as Normal cecum, Normal pylorus, Normal Z-line, Esophagitis, Polyps, Ulcerative Colitis, Dyed and lifted polyp, and Dyed resection margins are used for training and validation. The initial phase of the work involves an image pre-processing step, followed by the extraction of approximate discrete wavelet transform coefficients. Each class of decomposed images is later given as input to a couple of considered convolutional neural network (CNN) models for training and testing in two different classification levels to recognize its predicted value. Afterward, the classification performance is measured through the following measuring indices: accuracy, precision, recall, specificity, and F1 score. The experimental result shows 97.25% and 93.75% of accuracy in the first level and second level of classification, respectively. Lastly, a comparative performance analysis is carried out with several other previously published works on a similar dataset where the proposed approach performs better than its contemporary methods.

Graphic Abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Abbreviations

GI:

Gastrointestinal

CNN:

Convolutional neural network

AI:

Artificial intelligence

WT:

Wavelet transform

2D-DWT:

Two-dimensional discrete wavelet transform

TF:

Time–frequency

CWT:

Continuous wavelet transform

α :

Scaling parameter

t :

Translation parameter

\(A\left( n \right)\) :

Approximate coefficients

\(D\left( n \right)\) :

Detail coefficients

\(g(n)\) :

Low-pass filter

\(h(n)\) :

High-pass filter

MRA:

Multi-resolution analysis

L:

Low pass

H:

High pass

ReLU:

Rectified linear unit

L(α):

Loss function

A:

Accuracy

R:

Recall

P:

Precision

F1:

F1 Score

S:

Specificity

TD:

Truly detected

FD:

Falsely detected

IPP:

Image pre-processing

BF:

Baseline features

ANN:

Artificial neural network

SVM:

Support vector machine

RF:

Random forest

BMFA:

Bidirectional marginal Fisher analysis

References

  1. 1.

    Tandon R (2007) Progress of gastroenterology in India. Indian J Gastroenterol 26:S31–S34

    PubMed  Google Scholar 

  2. 2.

    Cogan T, Cogan M, Tamil L (2019) MAPGI: accurate identification of anatomical landmarks and diseased tissue in gastrointestinal tract using deep learning. Comput Biol Med 111:103351

    Article  Google Scholar 

  3. 3.

    Kasban H, El-Bendary MAM, Salama DH (2015) A comparative study of medical imaging techniques. Int J Inf Sci Intell Syst 4(2):37–58

    Google Scholar 

  4. 4.

    https://www.databridgemarketresearch.com/news/global-surgical-endoscopes-market, Accessed 25 Aug 2010

  5. 5.

    Watanabe K, Nagata N, Shimbo T, Nakashima R, Furuhata E, Sakurai T, Akazawa N, Yokoi C, Kobayakawa M, Akiyama J, Mizokami M, Uemura N (2013) Accuracy of endoscopic diagnosis of Helicobacter pylori infection according to level of endoscopic experience and the effect of training. BMC Gastroenterol 13(128):1–7

    Google Scholar 

  6. 6.

    Hoogenboom SA, Bagci U, Wallace MB (2019) AI in gastroenterology. The current state of play and the potential. How will it affect our practice and when? Tech Gastrointest Endosc 22:42–47

    Article  Google Scholar 

  7. 7.

    Mohapatra S, Swarnkar T, Das J (2020) Deep convolutional neural network in medical image processing. In: Balas VE, Mishra BK, Kumar R (eds) Handbook of Deep Learning in Biomedical Engineering. Academic Press, pp 25–60. https://doi.org/10.1016/B978-0-12-823014-5.00006-5

  8. 8.

    S. Mohapatra, and T. Swarnkar, "Artificial Intelligence for Smart Healthcare Management: Brief Study," In Intelligent and Cloud Computing, pp. 365–373, Springer, Singapore, 2019.

  9. 9.

    Alagappan M, Brown JRG, Mori Y, Berzin TM (2018) Artificial intelligence in gastrointestinal endoscopy: The future is almost here. World J Gastrointest Endoscopy 10(10):239–249

    Article  Google Scholar 

  10. 10.

    Itoh T, Kawahira H, Nakashima H, Yata N (2018) Deep learning analyzes Helicobacter pylori infection by upper gastrointestinal endoscopy images. Endosc Int open 6(2):E139–E144

    Article  Google Scholar 

  11. 11.

    Zhu Y, Wang QC, Xu MD, Zhang Z, Cheng J, Zhong YS, Zhang YQ, Chen WF, Yao LQ, Zhou PH, Li QL (2019) Application of convolutional neural network in the diagnosis of the invasion depth of gastric cancer based on conventional endoscopy. Gastrointest Endosc 89(4):806–815

    Article  Google Scholar 

  12. 12.

    Hirasawa T, Aoyama K, Tanimoto T, Ishihara S, Shichijo S, Ozawa T, Ohnishi T, Fujishiro M, Matsuo K, Fujisaki J, Tada T (2018) Application of artificial intelligence using a convolutional neural network for detecting gastric cancer in endoscopic images. Gastric Cancer 21(4):653–660

    Article  Google Scholar 

  13. 13.

    Shichijo S, Nomura S, Aoyama K, Nishikawa Y, Miura M, Shinagawa T, Takiyama H, Tanimoto T, Ishihara S, Matsuo K, Tada T (2017) Application of convolutional neural networks in the diagnosis of Helicobacter pylori infection based on endoscopic images. EBioMedicine 25:106–111

    Article  Google Scholar 

  14. 14.

    Pogorelov K, Ostroukhova O, Jeppsson M, Espeland H, Griwodz C, de Lange T, Johansen D, Riegler M, Halvorsen P (2018) Deep learning and hand-crafted feature based approaches for polyp detection in medical videos. In: 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), pp. 381–386, IEEE, June 2018.

  15. 15.

    Bernal J, Aymeric H (2020) Miccai endoscopic vision challenge polyp detection and segmentation. https://endovissub2017-giana.grand-challenge.org/home/. Accessed 11 Aug 2020

  16. 16.

    Bernal J, S´anchez FJ, Fern´andez-Esparrach G, Gil D, Rodr´ıguez C, Vilari˜no F (2015) Wm-dova maps for accurate polyp highlighting in colonoscopy: Validation vs. saliency maps from physicians. Comput Med Imaging Graph 43:99–111

    Article  Google Scholar 

  17. 17.

    Pogorelov K, Randel KR, Griwodz C, Eskeland SL, de Lange T, Johansen D, Spampinato C, Dang-Nguyen D-T, Lux M, Schmidt PT, Riegler M, Halvorsen P (2017) KVASIR: a multi-class image dataset for computer aided gastrointestinal disease detection. In: Proc. of MMSYS, pp 164–169, June 2017

  18. 18.

    Pogorelov K, Randel KR, de Lange T, Eskeland SL, Griwodz C, Johansen D, Spampinato C, Taschwer M, Lux M, Schmidt PT, Riegler M, Halvorsen P (2017) Nerthus: A BOWEL preparation quality video dataset. In: Proc. of MMSYS, pp. 170–174, June 2017

  19. 19.

    Asperti A, Mastronardo C (2017) The effectiveness of data augmentation for detection of gastrointestinal diseases from endoscopical images,” 1712.03689, Dec 2017.

  20. 20.

    Hicks S, Riegler M, Pogorelov K, Anonsen KV, de Lange T, Johansen D, Jeppsson M, Randel KR, Eskeland SL, Halvorsen P (2018) Dissecting deep neural networks for better medical image classification and classification understanding. In: 2018 IEEE 31st International Symposium on computer-based medical systems, pp 363–368, June 2018

  21. 21.

    Ghatwary N, Ye X, Zolgharni M (2019) Esophageal abnormality detection using densenet based faster R-CNN with gabor features. IEEE Access 7:84374–84385

    Article  Google Scholar 

  22. 22.

    Sub-Challenge Early Barrett's Cancer Detection, https://endovissub-barrett.grand-challenge.org. Accessed 11 Aug 2020

  23. 23.

    Owais M, Arsalan M, Choi J, Mahmood T, Park KR (2019) Artificial intelligence-based classification of multiple gastrointestinal diseases using endoscopy videos for clinical diagnosis. J Clin Med 8(7):986

    Article  Google Scholar 

  24. 24.

    Gastrolab—The Gastrointestinal Site, http://www.gastrolab.net/ni.htm. Accessed 24 Aug 2020

  25. 25.

    Majid A, Khan MA, Yasmin M, Rehman A, Yousafzai A, Tariq U (2020) Classification of stomach infections: a paradigm of convolutional neural network along with classical features fusion and selection. Microsc Res Tech 83(5):562–576

    Article  Google Scholar 

  26. 26.

    Öztürk S, Özkaya U (2020) Gastrointestinal tract classification using improved LSTM based CNN. Multimed Tools Appl 79(39):28825–28840

    Article  Google Scholar 

  27. 27.

    Gopi VP, Palanisamy P (2011) Endoscopic image compression based on Double Density Discrete Wavelet Transform and SPIHT coding. In: 2011 IEEE International Conference on Control System, Computing and Engineering, pp 466–471, Nov 2011

  28. 28.

    Bonnel J, Khademi A, Krishnan S, Ioana C (2019) Small bowel image classification using cross-co-occurrence matrices on wavelet domain. Biomed Signal Process Control 4(1):7–15

    Article  Google Scholar 

  29. 29.

    Barbosa DC, Roupar DB, Ramos JC, Tavares AC, Lima CS (2012) Automatic small bowel tumor diagnosis by using multi-scale wavelet-based analysis in wireless capsule endoscopy images. BiomedEng Online 11:3–20

    Article  Google Scholar 

  30. 30.

    Xue Y, Li N, Wei X, Wan RA, Wang C (2020) Deep learning-based earlier detection of esophageal cancer using improved empirical wavelet transform from endoscopic image. IEEE Access 8:123765–123772

    Article  Google Scholar 

  31. 31.

    Billah M, Waheed S, Rahman MM (2017) An automatic gastrointestinal polyp detection system in video endoscopy using fusion of color wavelet and convolutional neural network features. Int J Biomed Imaging 2017:1–9. https://doi.org/10.1155/2017/9545920

    Article  Google Scholar 

  32. 32.

    Liu X, Gu J, Xie Y, Xiong J, Qin W (2012) A new approach to detecting ulcer and bleeding in Wireless capsule endoscopy images. In: Proceedings of 2012 IEEE-EMBS International Conference on biomedical and health informatics, pp. 737–740, IEEE, Jan 2012

  33. 33.

    Borgli H, Thambawita V, Smedsrud PH, Hicks S, Jha D, Eskeland SL, Ranheim Randel K et al (2020) HyperKvasir, a comprehensive multi-class image and video dataset for gastrointestinal endoscopy. Sci Data 7(1):1–14

    Article  Google Scholar 

  34. 34.

    Vetterli M, Herley C (1992) Wavelets and filter banks: Theory and design. IEEE Trans Signal Process 40:2207–2232

    Article  Google Scholar 

  35. 35.

    Sinha SK, Tiwari LK (2018) Enhancement of image classification for forest encroachment mapping with destriped SWIR band in the wavelet domain. IEEE J Sel Top Appl Earth Observ Remote Sens 11(7):2276–2281

    Article  Google Scholar 

  36. 36.

    Nayak DR, Dash R, Majhi B (2016) BrFn MR image classification using two-dimensional discrete wavelet transform and AdaBoost with random forests. Neurocomputing 177:188–197

    Article  Google Scholar 

  37. 37.

    Si L, Xiong X, Wang Z, Tan C (2020) A deep convolutional neural network model for intelligent discrimination between coal and rocks in coal mining face. Math Probl Eng 2020:1–12. https://doi.org/10.1155/2020/2616510

    Article  Google Scholar 

  38. 38.

    Liu Y, Gu Z, Cheung WK (2017) HKBU at MediaEval 2017 medico: medical multimedia task. In: MediaEval, Sept 2017

  39. 39.

    Petscharnig S, Schöffmann K, Lux M (2017) An Inception-like CNN Architecture for GI Disease and Anatomical Landmark Classification. In: MediaEval, Sept 2017

  40. 40.

    Agrawal T, Gupta R, Sahu S, Espy-Wilson CY (2017) SCL-UMD at the medico task-MediaEval 2017: transfer learning based classification of medical images. In: MediaEval, Sept 2017

  41. 41.

    KahsayGebreslassie A, Hagos Mt (2019) Automated gastrointestinal disease recognition for endoscopic images. In: IEEE International Conference on Computing, Communication, and Intelligent Systems (ICCCIS), pp 312–316, Oct 2019

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Janmenjoy Nayak.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mohapatra, S., Nayak, J., Mishra, M. et al. Wavelet Transform and Deep Convolutional Neural Network-Based Smart Healthcare System for Gastrointestinal Disease Detection. Interdiscip Sci Comput Life Sci (2021). https://doi.org/10.1007/s12539-021-00417-8

Download citation

Keywords

  • Artificial intelligence
  • Convolutional neural network
  • Gastrointestinal tract
  • Smart healthcare system
  • Wavelet transform
  • Time–frequency analysis