Skip to main content
Log in

In Silico Identification of Novel microRNAs and Targets Using EST Analysis in Allium cepa L.

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

microRNAs (miRNAs) are a newly discovered class of non-coding small RNAs roughly 22 nucleotides long. Increasing evidence has shown that miRNAs play multiple roles in biological processes, including development, cell proliferation, apoptosis and stress responses. The identification of miRNAs and their targets is an important need to understand their roles in the development and physiology of sweet onion (Allium cepa). In this research, several computational approaches were combined to make concise prediction of the potential miRNAs and their targets. We used previously known miRNAs from other plant species against Expressed Sequence Tags (EST) database to search for the potential miRNAs. As a result, nine potential miRNAs were identified in eight ESTs of A. cepa, belonging to eight families. We could further BLAST the mRNA database and found total 154 number of the potential targets in A. cepa based on these potential miRNAs. According to the mRNA target information provided by NCBI, most of the target mRNAs appeared to be involved in plant growth, signal transduction, development, and stress responses. Gene ontology (GO) analysis implicated these targets in 32 biological processes such as protein ubiquitination, plant hormone signalling pathways and heme biosynthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Zhang BH, Pan XP, Wang QL, George PC, Anderson TA (2005) Identification and characterization of new plant microRNAs using EST analysis. Cell Res 15(5):336–360

    Article  Google Scholar 

  2. Zhou X, Ruan J, Wang G, Zhang W (2007) Characterization and identification of microRNA core promoters in four model species. PLoS Comput Biol 3(3):e37

    Article  Google Scholar 

  3. Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    Article  CAS  Google Scholar 

  4. Park MY, Wu G, Gonzalez-Sulser A, Vaucheret H, Poethig RS (2005) Nuclear processing and export of microRNAs in Arabidopsis. Proc Natl Acad Sci USA 102(10):3691–3696

    Article  CAS  Google Scholar 

  5. Taylor RS, Tarver JE, Hiscock SJ, Donoghue PC (2014) Evolutionary history of plant microRNAs. Trends Plant Sci 19(3):175–182

    Article  CAS  Google Scholar 

  6. Bagga S, Bracht J, Hunter S, Massirer K, Holtz J, Eachus R, Pasquinelli AE (2005) Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122(4):553–563

    Article  CAS  Google Scholar 

  7. Xie F, Frazier TP, Zhang B (2011) Identification, characterization and expression analysis of MicroRNAs and their targets in the potato (Solanum tuberosum). Gene 473(1):8–22

    Article  CAS  Google Scholar 

  8. Wang X-J, Reyes JL, Chua N-H, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5(9):1

    Google Scholar 

  9. Adams MD, Kelley JM, Gocayne JD, Dubnick M, Polymeropoulos MH, Xiao H, Merril CR, Wu A, Olde B, Moreno RF (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656

    Article  CAS  Google Scholar 

  10. Bentwich I, Avniel A, Karov Y, Aharonov R, Gilad S, Barad O, Barzilai A, Einat P, Einav U, Meiri E (2005) Identification of hundreds of conserved and nonconserved human microRNAs. Nat Genet 37(7):766–770

    Article  CAS  Google Scholar 

  11. Lewis BP, Burge CB, Bartel DP (2005) Conserved seed pairing, often flanked by adenosines, indicates that thousands of human genes are microRNA targets. Cell 120(1):15–20

    Article  CAS  Google Scholar 

  12. Wang X-J, Reyes JL, Chua N-H, Gaasterland T (2004) Prediction and identification of Arabidopsis thaliana microRNAs and their mRNA targets. Genome Biol 5(9):R65

    Article  Google Scholar 

  13. Zhang B, Pan X, Anderson TA (2006) Identification of 188 conserved maize microRNAs and their targets. FEBS Lett 580(15):3753–3762

    Article  CAS  Google Scholar 

  14. Zhang B, Pan X, Cannon CH, Cobb GP, Anderson TA (2006) Conservation and divergence of plant microRNA genes. Plant J 46(2):243–259

    Article  CAS  Google Scholar 

  15. Matukumalli LK, Grefenstette JJ, Sonstegard TS, Van Tassell CP (2004) EST-PAGE—managing and analyzing EST data. Bioinformatics 20(2):286–288

    Article  CAS  Google Scholar 

  16. Graham MA, Silverstein KA, Cannon SB, VandenBosch KA (2004) Computational identification and characterization of novel genes from legumes. Plant Physiol 135(3):1179–1197

    Article  CAS  Google Scholar 

  17. Jung J, Park H-W, Hahn Y, Hur C-G, In D, Chung H-J, Liu J, Choi D-W (2003) Discovery of genes for ginsenoside biosynthesis by analysis of ginseng expressed sequence tags. Plant Cell Rep 22(3):224–230

    Article  CAS  Google Scholar 

  18. Ohlrogge J, Benning C (2000) Unraveling plant metabolism by EST analysis. Curr Opin Plant Biol 3(3):224–228

    Article  CAS  Google Scholar 

  19. Xie FL, Huang SQ, Guo K, Xiang AL, Zhu YY, Nie L, Yang ZM (2007) Computational identification of novel microRNAs and targets in Brassica napus. FEBS Lett 581(7):1464–1474

    Article  CAS  Google Scholar 

  20. Zhang B, Pan X, Stellwag EJ (2008) Identification of soybean microRNAs and their targets. Planta 229(1):161–182

    Article  CAS  Google Scholar 

  21. Jin W, Li N, Zhang B, Wu F, Li W, Guo A, Deng Z (2008) Identification and verification of microRNA in wheat (Triticum aestivum). J Plant Res 121(3):351–355

    Article  CAS  Google Scholar 

  22. Frazier TP, Xie F, Freistaedter A, Burklew CE, Zhang B (2010) Identification and characterization of microRNAs and their target genes in tobacco (Nicotiana tabacum). Planta 232(6):1289–1308

    Article  CAS  Google Scholar 

  23. Xie F, Frazier TP, Zhang B (2010) Identification and characterization of microRNAs and their targets in the bioenergy plant switchgrass (Panicum virgatum). Planta 232(2):417–434

    Article  CAS  Google Scholar 

  24. Pilcher RLR, Moxon S, Pakseresht N, Moulton V, Manning K, Seymour G, Dalmay T (2007) Identification of novel small RNAs in tomato (Solanum lycopersicum). Planta 226(3):709–717

    Article  Google Scholar 

  25. Wang J, Yang X, Xu H, Chi X, Zhang M, Hou X (2012) Identification and characterization of microRNAs and their target genes in Brassica oleracea. Gene 505(2):300–308

    Article  CAS  Google Scholar 

  26. Usha S, Jyothi M, Suchithra B, Dixit R, Rai D (2017) Computational identification of MicroRNAs and their targets from finger millet (Eleusinecoracana). Interdiscip Sci Comput Life Sci 9(1):72–79

    Article  CAS  Google Scholar 

  27. Tilman D, Balzer C, Hill J, Befort BL (2011) Global food demand and the sustainable intensification of agriculture. Proc Natl Acad Sci 108(50):20260–20264

    Article  CAS  Google Scholar 

  28. Mathews DH, Sabina J, Zuker M, Turner DH (1999) Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol 288(5):911–940

    Article  CAS  Google Scholar 

  29. Zuker M (2003) Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31(13):3406–3415

    Article  CAS  Google Scholar 

  30. Du H, Zhang L, Liu L, Tang X-F, Yang W-J, Wu Y-M, Huang Y-B, Tang Y-X (2009) Biochemical and molecular characterization of plant MYB transcription factor family. Biochemistry (Moscow) 74(1):1–11

    Article  CAS  Google Scholar 

  31. Dsouza M, Larsen N, Overbeek R (1997) Searching for patterns in genomic data. Trends Genet 13(12):497–498

    Article  CAS  Google Scholar 

  32. Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297(5589):2053–2056

    Article  CAS  Google Scholar 

  33. Sunkar R, Zhu J-K (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16(8):2001–2019

    Article  CAS  Google Scholar 

  34. Schwab R, Palatnik JF, Riester M, Schommer C, Schmid M, Weigel D (2005) Specific effects of microRNAs on the plant transcriptome. Dev Cell 8(4):517–527

    Article  CAS  Google Scholar 

  35. Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110(4):513–520

    Article  CAS  Google Scholar 

  36. Lan Y, Su N, Shen Y, Zhang R, Wu F, Cheng Z, Wang J, Zhang X, Guo X, Lei C (2012) Identification of novel MiRNAs and MiRNA expression profiling during grain development in indica rice. BMC Genom 13(1):1

    Article  Google Scholar 

  37. Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33(suppl 2):W701–W704

    Article  CAS  Google Scholar 

  38. Ding H, Gao J, Luo M, Peng H, Lin H, Yuan G, Shen Y, Zhao M, Pan G, Zhang Z (2013) Identification and functional analysis of miRNAs in developing kernels of a viviparous mutant in maize. Crop J 1(2):115–126

    Article  Google Scholar 

  39. Zhu J-K (2008) Reconstituting plant miRNA biogenesis. Proc Natl Acad Sci 105(29):9851–9852

    Article  CAS  Google Scholar 

  40. Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell 21(9):2780–2796

    Article  Google Scholar 

  41. Borges F, Pereira PA, Slotkin RK, Martienssen RA, Becker JD (2011) MicroRNA activity in the Arabidopsis male germline. J Exp Bot 62(5):1611–1620

    Article  CAS  Google Scholar 

  42. Sunkar R, Zhou X, Zheng Y, Zhang W, Zhu J-K (2008) Identification of novel and candidate miRNAs in rice by high throughput sequencing. BMC Plant Biol 8(1):1

    Article  Google Scholar 

  43. Fattash I, Voß B, Reski R, Hess WR, Frank W (2007) Evidence for the rapid expansion of microRNA-mediated regulation in early land plant evolution. BMC Plant Biol 7(1):1

    Article  Google Scholar 

  44. Zhang B, Pan X, Cox S, Cobb G, Anderson T (2006) Evidence that miRNAs are different from other RNAs. Cell Mol Life Sci CMLS 63(2):246–254

    Article  CAS  Google Scholar 

  45. Feshani AM, Mohammadi S, Frazier TP, Abbasi A, Abedini R, Farsad LK, Ehya F, Salekdeh GH, Mardi M (2012) Identification and validation of Asteraceae miRNAs by the expressed sequence tag analysis. Gene 493(2):253–259

    Article  CAS  Google Scholar 

  46. Meyers BC, Axtell MJ, Bartel B, Bartel DP, Baulcombe D, Bowman JL, Cao X, Carrington JC, Chen X, Green PJ (2008) Criteria for annotation of plant microRNAs. Plant Cell 20(12):3186–3190

    Article  CAS  Google Scholar 

  47. Jones-Rhoades MW, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress-induced miRNA. Mol Cell 14(6):787–799

    Article  CAS  Google Scholar 

  48. Czemmel S, Heppel SC, Bogs J (2012) R2R3 MYB transcription factors: key regulators of the flavonoid biosynthetic pathway in grapevine. Protoplasma 249(2):109–118

    Article  CAS  Google Scholar 

  49. Feller A, Machemer K, Braun EL, Grotewold E (2011) Evolutionary and comparative analysis of MYB and bHLH plant transcription factors. Plant J 66(1):94–116

    Article  CAS  Google Scholar 

  50. Ma Q, Dai X, Xu Y, Guo J, Liu Y, Chen N, Xiao J, Zhang D, Xu Z, Zhang X (2009) Enhanced tolerance to chilling stress in OsMYB3R-2 transgenic rice is mediated by alteration in cell cycle and ectopic expression of stress genes. Plant Physiol 150(1):244–256

    Article  CAS  Google Scholar 

  51. Chen J, Xia X, Yin W (2009) Expression profiling and functional characterization of a DREB2-type gene from Populus euphratica. Biochem Biophys Res Commun 378(3):483–487

    Article  CAS  Google Scholar 

  52. Chen M, Wang Q-Y, Cheng X-G, Xu Z-S, Li L-C, Ye X-G, Xia L-Q, Ma Y-Z (2007) GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochem Biophys Res Commun 353(2):299–305

    Article  CAS  Google Scholar 

  53. Cler E, Papai G, Schultz P, Davidson I (2009) Recent advances in understanding the structure and function of general transcription factor TFIID. Cell Mol Life Sci 66(13):2123–2134

    Article  CAS  Google Scholar 

  54. Unver T, Budak H (2009) Conserved microRNAs and their targets in model grass species Brachypodium distachyon. Planta 230(4):659–669

    Article  CAS  Google Scholar 

  55. Dye BT, Schulman BA (2007) Structural mechanisms underlying posttranslational modification by ubiquitin-like proteins. Annu Rev Biophys Biomol Struct 36:131–150

    Article  CAS  Google Scholar 

  56. Lechner E, Achard P, Vansiri A, Potuschak T, Genschik P (2006) F-box proteins everywhere. Curr Opin Plant Biol 9(6):631–638

    Article  CAS  Google Scholar 

  57. Qiao H, Chang KN, Yazaki J, Ecker JR (2009) Interplay between ethylene, ETP1/ETP2 F-box proteins, and degradation of EIN2 triggers ethylene responses in Arabidopsis. Genes Dev 23(4):512–521

    Article  CAS  Google Scholar 

  58. Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12(23):3703–3714

    Article  CAS  Google Scholar 

  59. Bu Q, Li H, Zhao Q, Jiang H, Zhai Q, Zhang J, Wu X, Sun J, Xie Q, Wang D (2009) The Arabidopsis RING finger E3 ligase RHA2a is a novel positive regulator of abscisic acid signaling during seed germination and early seedling development. Plant Physiol 150(1):463–481

    Article  CAS  Google Scholar 

  60. Huang Y, Li CY, Pattison DL, Gray WM, Park S, Gibson SI (2010) SUGAR-INSENSITIVE3, a RING E3 ligase, is a new player in plant sugar response. Plant Physiol 152(4):1889–1900

    Article  CAS  Google Scholar 

  61. Peng M, Hannam C, Gu H, Bi YM, Rothstein SJ (2007) A mutation in NLA, which encodes a RING-type ubiquitin ligase, disrupts the adaptability of Arabidopsis to nitrogen limitation. Plant J 50(2):320–337

    Article  CAS  Google Scholar 

  62. Santner A, Estelle M (2009) Recent advances and emerging trends in plant hormone signalling. Nature 459(7250):1071–1078

    Article  CAS  Google Scholar 

  63. Stone SL, Williams LA, Farmer LM, Vierstra RD, Callis J (2006) KEEP ON GOING, a RING E3 ligase essential for Arabidopsis growth and development, is involved in abscisic acid signaling. Plant Cell 18(12):3415–3428

    Article  CAS  Google Scholar 

  64. Craig A, Ewan R, Mesmar J, Gudipati V, Sadanandom A (2009) E3 ubiquitin ligases and plant innate immunity. J Exp Bot 60(4):1123–1132

    Article  CAS  Google Scholar 

  65. Fujita Y, Fujita M, Shinozaki K, Yamaguchi-Shinozaki K (2011) ABA-mediated transcriptional regulation in response to osmotic stress in plants. J Plant Res 124(4):509–525

    Article  CAS  Google Scholar 

  66. Smirnova O, Stepanenko I, Shumnyi V (2011) The role of the COP1, SPA, and PIF proteins in plant photomorphogenesis. Biol Bull Rev 1(4):314–324

    Article  Google Scholar 

  67. Yan J, Wang J, Li Q, Hwang JR, Patterson C, Zhang H (2003) AtCHIP, a U-box-containing E3 ubiquitin ligase, plays a critical role in temperature stress tolerance in Arabidopsis. Plant Physiol 132(2):861–869

    Article  CAS  Google Scholar 

  68. Hématy K, Höfte H (2008) Novel receptor kinases involved in growth regulation. Curr Opin Plant Biol 11(3):321–328

    Article  Google Scholar 

  69. Nibau C, Cheung A (2011) New insights into the functional roles of CrRLKs in the control of plant cell growth and development. Plant Signal Behav 6(5):655–659

    Article  CAS  Google Scholar 

  70. Ederli L, Madeo L, Calderini O, Gehring C, Moretti C, Buonaurio R, Paolocci F, Pasqualini S (2011) The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. J Plant Physiol 168(15):1784–1794

    Article  CAS  Google Scholar 

  71. Yang X, Deng F, Ramonell KM (2012) Receptor-like kinases and receptor-like proteins: keys to pathogen recognition and defense signaling in plant innate immunity. Front Biol 7(2):155–166

    Article  CAS  Google Scholar 

  72. Haswell ES, Phillips R, Rees DC (2011) Mechanosensitive channels: what can they do and how do they do it? Structure 19(10):1356–1369

    Article  CAS  Google Scholar 

  73. Ortiz-Lopez A, Chang H-C, Bush D (2000) Amino acid transporters in plants. Biochim et Biophys (BBA) Biomembr 1465(1):275–280

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by Department of Plant Breeding and Biotechnology, University of Tabriz, Tabriz, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bahram Baghban Kohnehrouz.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghban Kohnehrouz, B., Bastami, M. & Nayeri, S. In Silico Identification of Novel microRNAs and Targets Using EST Analysis in Allium cepa L.. Interdiscip Sci Comput Life Sci 10, 771–780 (2018). https://doi.org/10.1007/s12539-017-0240-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-017-0240-9

Keywords

Navigation