Skip to main content
Log in

Genome-Wide Assessment of Polygalacturonases-Like (PGL) Genes of Medicago truncatula, Sorghum bicolor, Vitis vinifera and Oryza sativa Using Comparative Genomics Approach

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

The polygalacturonases (PG) is one of the important members of pectin-degrading glycoside hydrolases of the family GH28. In plants, PG represents multigene families associated with diverse processes. In the present study, an attempt has been made to investigate the diversity of PG genes among monocots and dicots with respect to phylogeny, gene duplication and subcellular localization to get an insight into the evolutionary and functional attributes. The genome-wide assessment of Medicago truncatula, Vitis vinifera Sorghum bicolor, and Oryza sativa L. ssp. japonica genomes revealed 53, 49, 38 and 35 PG-like (PGL) genes, respectively. The predominance of glyco_hydro_28 domain, hydrophilic nature and genes with multiple introns were uniformly observed. The subcellular localization showed the presence of signal sequences targeting the secretory pathways. The phylogenetic tree constructed marked uniformity with three distinct clusters for each plant irrespective of the variability in the genome sizes. The site-specific selection pressure analysis based on K a/K s values showed predominance of purifying selection pressures among different groups identified in these plants. The functional divergence analysis revealed significant site-specific selective constraints. Results of site-specific selective pressure analysis throw light on the functional diversity of PGs in various plant processes and hence its constitutive nature. These findings are further strengthened by functional divergence analysis which reveals functionally diverse groups in all the four species representing monocots and dicots. The outcome of the present work could be utilized for deciphering the novel functions of PGs in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Seneschal F, Wattier C, Rusterucci C, Pelloux J (2014) Homogalacturonan-modifying enzymes: structures, expression, and roles in plants. J Exp Bot 65(18):5125–5160

    Article  Google Scholar 

  2. Alkorta I, Garbisu C, Llama MJ, Serra JL (1998) Industrial applications of pectic enzymes: a review. Process Biochem 33(1):21–28

    Article  CAS  Google Scholar 

  3. Naidu GSN, Panda T (1998) Production of pectolytic enzymes—a review. Bioprocess Eng 19(5):355–361

    Article  CAS  Google Scholar 

  4. Lang C, Örnenburg HD (2000) Perspectives in the biological function and the technological application of polygalacturonases. Appl Microbiol Biotechnol 53(4):366–375

    Article  CAS  Google Scholar 

  5. Kashyap DR, Vohra PK, Chopra S, Tewari R (2001) Applications of pectinases in the commercial sector: a review. Biores Technol 77(3):215–227

    Article  CAS  Google Scholar 

  6. Hoondal G, Tiwari R, Tewari R, Dahiya N, Beg Q (2002) Microbial alkaline pectinases and their industrial applications: a review. Appl Microbiol Biotechnol 59(4–5):409–418

    CAS  PubMed  Google Scholar 

  7. Gummadi SN, Panda T (2003) Purification and biochemical properties of microbial pectinases—a review. Process Biochem 38(7):987–996

    Article  CAS  Google Scholar 

  8. Jayani RS, Saxena S, Gupta R (2005) Microbial pectinolytic enzymes: a review. Process Biochem 40(9):2931–2944

    Article  CAS  Google Scholar 

  9. Gummadi SN, Kumar DS (2006) Optimization of chemical and physical parameters affecting the activity of pectin lyase and pectatelyase from Debaryomycesnepalensis: a statistical approach. Biochem Eng J 30(2):130–137

    Article  CAS  Google Scholar 

  10. Pedrolli DB, Monteiro AC, Gomes E, Carmona EC (2009) Pectin and Pectinases: production, characterization and industrial application of microbial pectinolytic enzymes. Open Biotechnol J 3:9–18

    Article  CAS  Google Scholar 

  11. Yadav S, Yadav PK, Yadav D, Yadav KDS (2009) Pectinlyase: a review. Process Biochem 44(1):1–10

    Article  Google Scholar 

  12. Khan M, Ekambaram N, Umesh-Kumar S (2013) Potential application of Pectinases in developing functional food. Annu Rev Food Sci Technol 4:21–34

    Article  CAS  Google Scholar 

  13. Sharma N, Rathore M, Sharma M (2013) Microbial Pectinases: sources, characterization and applications. Rev Environ Sci and Biotechnol 12(1):45–60

    Article  CAS  Google Scholar 

  14. Chaudhri A, Suneetha V (2012) Microbially derived Pectinases: a review. IOSR J Pharm Biol Sci 2(2):1–5

    Google Scholar 

  15. Dubey AK, Yadav S, Kumar M, Anand G, Yadav D (2016) Molecular biology of microbial pectate lyases: a review, British. Biotechnol J 13(1):1–26

    Google Scholar 

  16. Yadav PK, Singh VK, Yadav S, Yadav KDS, Yadav D (2009) In silico analysis of pectin lyase and pectinase sequences. Biochemistry 74(9):1049–1055

    CAS  PubMed  Google Scholar 

  17. Dubey AK, Yadav S, Kumar M, Singh VK, Sarangi BK, Yadav D (2010) In silico characterization of pectatelyase protein sequences from different source organisms. Enzyme Res 2010:1–11

    Article  Google Scholar 

  18. Dubey AK, Yadav S, Rajput R, Anand G, Yadav D (2012) In silico characterization of bacterial, fungal and plant polygalacturonase protein sequences. Online J Bioinform 13:246–259

    Google Scholar 

  19. Lara-Marquez A, Zavala-Paramo MG, Lopez-Romero E, Calderon-Cortes N, Lopez-Gomez R, Conejo-Saucedo U, Cano-Camacho H (2011) Cloning and characterization of a pectin lyase gene from Colletotrichum lindemuthianum and comparative phylogenetic/structural analyses with genes from phytopathogenic and saprophytic/opportunistic microorganisms. BMC Microbiol. https://doi.org/10.1186/1471-2180-11-260

    Article  PubMed  PubMed Central  Google Scholar 

  20. Cao J (2012) Pectin lyases in Arabidopsis thaliana: evolution, selection and expression profiles. PLoS One 7(10):e46944

    Article  CAS  Google Scholar 

  21. Jiang J, Yao L, Miao Y, Cao J (2013) Genome wide characterization of the pectatelyase-like (PLL) genes in Brassica rapa. Mol Genet Genom 288(11):601–614

    Article  CAS  Google Scholar 

  22. Bonnin E, Garnier C, Ralet MC (2014) Pectin-modifying enzymes and pectin-derived materials: applications and impact. Appl Microbiol Biotechnol 98(2):519–532

    Article  CAS  Google Scholar 

  23. Niture SK (2008) Comparative biochemical and structural characterizations of fungal polygalacturonases. Biologia 63(1):1–19

    Article  CAS  Google Scholar 

  24. Kim J, Shiu S-H, Thoma S, Li W-H, Patterson SE (2006) Patterns of expansions and expression divergence in the plant polygalacturonase gene family. Genome Biol 7(9):R87

    Article  Google Scholar 

  25. Yu Y, Liang Y, Lv M, Wu J, Lu G, Cao J (2014) Genome-wide identification and characterization of polygalacturonase genes in Cucumis sativus and Citrullus lanatus. Plant Physiol Biochem 74:263–275

    Article  CAS  Google Scholar 

  26. Park KC, Kwon SJ, Kim PH, Bureau T, Kim NS (2008) Gene structure dynamics and divergence of the polygalacturonase gene family of plants and fungus. Genome 51(1):30–40

    Article  CAS  Google Scholar 

  27. Yang Z-H, Liu H-J, Wang X-R, Zeng Q-Y (2013) Molecular evolution and expression divergence the Populus polygalacturonase super gene family shed light on the evolution of increasingly complex organ in plants. New Phytol 197(4):1353–1365

    Article  CAS  Google Scholar 

  28. Goff SA, Ricke D, Lan TH, Presting G, Wang R et al (2002) A draft sequence of rice genome (Oryza sativa L. ssp. japonica). Science 296(5565):92–100

    Article  CAS  Google Scholar 

  29. Jaillon O, Aury J-M, Noel B, Policriti A, Clepet C et al (2007) The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla. Nature 449(7161):463–467

    Article  CAS  Google Scholar 

  30. Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J et al (2009) The Sorghum bicolor genome and the diversification of grasse. Nature 457(7229):551–556

    Article  CAS  Google Scholar 

  31. Young ND, Debelle F, Oldroyd GED, Geurts R, Cannon SB et al (2011) The Medicago genome provides insight into the evolution of rhizobial symbioses. Nature 480(7378):520–524

    Article  CAS  Google Scholar 

  32. Tang H, Krishnakumar V, Bidwell S, Rosen B, Chan A et al (2014) An improved genome release (version Mt4.04) for the model legume Medicago truncatula. BMC Genom. https://doi.org/10.1186/1471-2164-15-312

    Article  Google Scholar 

  33. Pruitt KD, Tatusova T, Maglott DR (2007) NCBI reference sequence (RefSeq): curated non-redundant sequence database of genomes, transcripts and proteins. Nucleic Acids Res 35:D61–D65

    Article  CAS  Google Scholar 

  34. Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY et al (2014) Pfam: the protein families database. Nucleic Acids Res 42:D222–D230

    Article  CAS  Google Scholar 

  35. Emanuelsson O, Nielson H, Brunak S, von Heijne G (2000) Predicting subcellular localization of proteins based on their N-terminal amino acid sequence. J Mol Biol 300(4):1005–1016

    Article  CAS  Google Scholar 

  36. Small I, Peeters N, Legeai F, Lurin C (2004) Predotar: a tool for rapidly screening proteomes of N-terminal targeting sequence. Proteomics 4(6):1581–1590

    Article  CAS  Google Scholar 

  37. Petersen TN, Brunak S, von Heijne G, Nielson H (2011) SignalP 4.0: discriminating signal peptides from transmembrane region. Nat Methods 8(10):785–786

    Article  CAS  Google Scholar 

  38. Artimo P, Jonnalagedda M, Arnold K, Baratin D, Csardi G et al (2012) exPASy: SIB bioinformatics resource portal. Nucleic Acids Res 40:W597–W603

    Article  CAS  Google Scholar 

  39. Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Apple RD, Bairoch A (2002) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The Proteomics Protocols Handbook. Humana Press, New york, pp 571–607

    Google Scholar 

  40. Tamura K, Stecher G, Petersen D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30(12):2725–2729

    Article  CAS  Google Scholar 

  41. Librado P, Rozas J (2009) DnaSPv5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25(11):1451–1452

    Article  CAS  Google Scholar 

  42. Gu X (1999) Statistical methods for testing functional divergence after gene duplication. Mol Biol Evol 16(12):1664–1674

    Article  CAS  Google Scholar 

  43. Wang Y, Gu X (2001) Functional divergence in the caspase gene family and altered functional constraints: statistical analysis and prediction. Genetics 158(3):1311–1320

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Pond SLK, Frost SDW (2005) Not so different after all: a comparison of methods for detecting amino acids sites under selection. Mol Biol Evol 22(5):1208–1222

    Article  CAS  Google Scholar 

  45. Delport W, Poon AFY, Frost SDW, Pond SLK (2010) Datamonkey 2010: a suite for phylogenetic analysis tools for evolutionary biology. Bioinformatics 26(19):2455–2457

    Article  CAS  Google Scholar 

  46. Hadfield KA, Bennett AB (1998) Polygalacturonase: many genes in search of a function. Plant Physiol 117:337–343

    Article  CAS  Google Scholar 

  47. Sitrit Y, Hadfield KA, Bennett AB, Bradford KJ, Downie AB (1999) Expression of a polgalacturonase associated with tomato seed germination. Plant Physiol 121(2):419–428

    Article  CAS  Google Scholar 

  48. Sander L, Child R, Ulvskov P, Albrechtsen M, Borkhardt B (2001) Analysis of a dehiscence endo-polygalacturonase in oilseed rape (Brassica napus) and Arabidopsis thaliana: evidence for roles in cell separation in dehiscence & abscission zones, and in stylar tissues during pollen tube growth. Plant Mol Biol 46(4):469–479

    Article  CAS  Google Scholar 

  49. Demura T, Tashiro G, Horiguchi G, Kishimoto N, Kubo M et al (2002) Visualization by comprehensive microarray analysis of gene expression programs during transdiffernetiation of mesophyll cells into xylem cells. PNAS 99(24):15794–15799

    Article  Google Scholar 

  50. Mohnen D (2008) Pectin structure and biosynthesis. Curr Opin Plant Biol 11(3):266–277

    Article  CAS  Google Scholar 

  51. Ogawa M, Kay P, Wilson S, Swain SM (2009) Arabidopsis Dehiscence Zone Polygalacturonase1 (ADPG1), ADPG2 and QUARTET2 are polygalactironases required for cell separation during reproductive development in Arabidopsis. Plant Cell 21(1):216–233

    Article  CAS  Google Scholar 

  52. Orozco-Cardenas ML, Ryan CA (2003) Polygalacturonase β-subunit antisense gene expression in tomato plants leads to a progressive enhanced wound response and necrosis in leaves and abscission of developing flower. Plant Physiol 133(2):693–701

    Article  CAS  Google Scholar 

  53. Atkinson RG, Shroder R, Hallet IC, Cohen D, MacRae EA (2002) Overexpression of polygalacturonase in transgenic apple trees leads to a range of novel phenotypes involving changes in cell adhesion. Plant Physiol 129:122–133

    Article  CAS  Google Scholar 

  54. Fabi JP, Cordenunsi BR, Seymour GB, Lajobo FM, do Nascimento JR (2009) Molecular cloning and characterization of a ripening induced polygalacturonase related to papaya fruit softening. Plant Physiol Biochem 47:1075–1081

    Article  CAS  Google Scholar 

  55. Hurst LD (2002) The K a/K s ratio: diagnosing the form of sequence evolution. Trends Genet 18(9):486–487

    Article  Google Scholar 

  56. Nekrutenko A, Makova KD, Li WH (2002) The K a/K s ratio test for assessing the protein coding potential of genomic regions: an empirical and simulation study. Genome Res 12(1):198–202

    Article  CAS  Google Scholar 

  57. Suzuki Y, Gojobori T (1999) A method for detecting positive selection at single amino acid sites. Mol Biol Evol 16(10):1315–1328

    Article  CAS  Google Scholar 

  58. Lam HM, Xu X, Liu X, Chen W, Yang G et al (2010) Resequencing of 31 wild and cultivated soyabean genomes identifies patterns of genetic diversity and selection. Nat Genet 42(12):1053–1059

    Article  CAS  Google Scholar 

  59. Xu X, Liu X, Ge S, Jensen JD, Hu F et al (2011) Resequencing 50 accessions of cultivated and wild rice yields markers for identifying agronomically important genes. Nat Biotechnol 30(1):105–111

    Article  CAS  Google Scholar 

  60. Thakur S, Bothra AK, Sen A (2013) Functional divergence outlines the evolution of novel protein function in Nifh/BchL protein family. J Biosciences 38(4):733–740

    Article  CAS  Google Scholar 

  61. Scheffler K, Martin DP, Seoighe C (2006) Robust inference of positive selection from recombining coding sequences. Bioinformatics 22(22):2493–2499

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support by Department of Science and Technology, Government of India, New Delhi, in the form of SERB Young Scientist Fellowship (SB/FT/LS-430/2012) to S. Yadav is thankfully acknowledged. GA would like to acknowledge Jawaharlal Nehru Memorial Fund for providing Jawaharlal Nehru Memorial Scholarship for doctoral studies. The authors acknowledge the infrastructural support from the Head, Department of Biotechnology, D.D.U. Gorakhpur University, Gorakhpur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dinesh Yadav.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anand, G., Yadav, S., Tanveer, A. et al. Genome-Wide Assessment of Polygalacturonases-Like (PGL) Genes of Medicago truncatula, Sorghum bicolor, Vitis vinifera and Oryza sativa Using Comparative Genomics Approach. Interdiscip Sci Comput Life Sci 10, 704–721 (2018). https://doi.org/10.1007/s12539-017-0230-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-017-0230-y

Keywords

Navigation