Skip to main content
Log in

From FHB Resistance QTLs to Candidate Genes Identification in Triticum aestivum L.

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Fusarium head blight (FHB) caused by Fusarium graminearum is a worldwide destructive disease affecting cereals such as wheat. FHB resistance is a quantitative trait, and information for FHB resistance QTLs in wheat is available. However, little is known about genes underlying the FHB resistance QTL regions. Using a computational approach in this study, we have mined eight FHB resistance QTLs in wheat and predicted the candidate genes falling within these QTL intervals based on the available sequences and markers. A total of 18 genomic scaffolds located at chromosomes 2AL, 2DL, 3B and 4BS were prioritized to harbor FHB-resistant candidate genes. These genes are mainly involved in plant defense response, immune regulation and cellular detoxification. We believe that our results constitute a starting point for further validation to improve FHB-resistant bread wheat varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Pestka JJ, Smolinski AT (2005) Toxicology and potential effects on humans. J Toxicol Environ Health B Crit Rev 8:39–69

    Article  CAS  PubMed  Google Scholar 

  2. McMullen M, Jones R, Gallenberg D (1997) Scab of wheat and barley: a re-emerging disease of devastating impact. Plant Dis 81:1340–1348

    Article  Google Scholar 

  3. Bai G, Shaner G (2004) Management and resistance in wheat and barley to Fusarium head blight. Annu Rev Phytopathol 42:135–161

    Article  CAS  PubMed  Google Scholar 

  4. Buerstmayr H, Ban T, Anderson JA (2009) QTL mapping and marker-assisted selection for Fusarium head blight resistance in wheat: a review. Plant Breed 128:1–26

    Article  CAS  Google Scholar 

  5. Kugler KG, Siegwart G, Nussbaumer T, Ametz C, Spannagl M, Steiner B, Lemmens M, Mayer KF, Buerstmayr H, Schweiger W (2013) Quantitative trait loci-dependent analysis of a gene co-expression network associated with Fusarium head blight resistance in bread wheat (Triticum aestivum L.). BMC Genom 14:728

    Article  CAS  Google Scholar 

  6. Kosaka A, Ban T, Manickavelu A (2015) Genome-wide transcriptional profiling of wheat infected with Fusarium graminearum. Genome Data 5:260–262

    Article  Google Scholar 

  7. Spooner W, Youens-Clark K, Staines D, Ware D (2012) GrameneMart: the BioMart data portal for the Gramene project. Database 2012:bar056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ni J, Pujar A, Youens-Clark K, Yap I, Jaiswal P, Tecle I, Tung CW, Ren L, Spooner W, Wei X et al (2009) Gramene QTL database: development, content and applications. Database 2009:bap005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Deng W, Nickle DC, Learn GH, Maust B, Mullins JI (2007) ViroBLAST: a stand-alone BLAST web server for flexible queries of multiple databases and user’s datasets. Bioinformatics 23:2334–2336

    Article  CAS  PubMed  Google Scholar 

  10. Pearson WR (2013) An introduction to sequence similarity (“homology”) searching. Curr Protoc Bioinform. doi:10.1002/0471250953.bi0301s42

    Google Scholar 

  11. Leroy P, Guilhot N, Sakai H et al (2012) TriAnnot: a versatile and high performance pipeline for the automated annotation of plant genomes. Front Plant Sci 3:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Altschul SF, Madden TL, Schäffer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Waldron BL, Moreno-Sevilla B, Anderson JA, Stack RW, Frohberg RC (1999) RFLP mapping of QTL for Fusarium head blight resistance in wheat. Crop Sci 39:805–811

    Article  CAS  Google Scholar 

  14. Liu SX, Anderson JA (2003) Marker assisted evaluation of Fusarium head blight resistant wheat germplasm. Crop Sci 43:760–766

    Article  CAS  Google Scholar 

  15. Anderson JA et al (2001) DNA markers for Fusarium head blight resistance QTLs in two wheat populations. Theor Appl Genet 102:1164–1168

    Article  CAS  Google Scholar 

  16. Somers DJ, Fedak G, Savard M (2003) Molecular mapping of novel genes controlling Fusarium head blight resistance and deoxynivalenol accumulation in spring wheat. Genome 46:555–564

    Article  CAS  PubMed  Google Scholar 

  17. Francis SE, Ersoy RA, Ahn JW, Atwell BJ, Roberts TH (2012) Serpins in rice: protein sequence analysis, phylogeny and gene expression during development. BMC Genom 13:449

    Article  CAS  Google Scholar 

  18. Ma C, Zhou J, Chen G, Bian Y, Lv D, Xiaohui L, Wang Z, Yan Y (2014) iTRAQ-based quantitative proteome and phosphoprotein characterization reveals the central metabolism changes involved in wheat grain development. BMC Genom 15:1029

    Article  CAS  Google Scholar 

  19. Licausi F, Ohme-takagi M, Perata P (2013) APETALA2/Ethylene Responsive Factor (AP2/ERF) transcription factors: mediators stress responses and developmental programs. New Phytol 199:639–649

    Article  CAS  PubMed  Google Scholar 

  20. Whitford R, Baumann U, Sutton T, Gumaelius L, Wolters P, Tingey S, Able JA, Langridge P (2007) Identification of transposons, retroelements, and a gene family predominantly expressed in floral tissues in chromosome 3DS of the hexaploid wheat progenitor Aegilops tauschii. Funct Integr Genom 7:37–52

    Article  CAS  Google Scholar 

  21. Lumbreras V, Vilela B, Irar S, Sole M, Capellades M, Valls M, Coca M, Pageś M (2010) MAPK phosphatase MKP2 mediates disease responses in Arabidopsis and functionally interacts with MPK3 and MPK6. Plant J 63:1017–1030

    Article  CAS  PubMed  Google Scholar 

  22. Bargsten JW, Nap JP, Sanchez-Perez GF, Van Dijk A (2014) Prioritization of candidate genes in QTL regions based on associations between traits and biological processes. BMC Plant Biol 14:330

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Higher Education and Scientific Research, Tunisia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mouna Choura.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choura, M., Hanin, M., Rebaï, A. et al. From FHB Resistance QTLs to Candidate Genes Identification in Triticum aestivum L.. Interdiscip Sci Comput Life Sci 8, 352–356 (2016). https://doi.org/10.1007/s12539-016-0164-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-016-0164-9

Keywords

Navigation