Skip to main content
Log in

QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs

  • Original Research Article
  • Published:
Interdisciplinary Sciences: Computational Life Sciences Aims and scope Submit manuscript

Abstract

Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here, we review the results of quantum mechanics/molecular mechanics molecular dynamics and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Jenuwein T (2006) The epigenetic magic of histone lysine methylation. Febs J 273(14):3121–3135. doi:10.1111/j.1742-4658.2006.05343.x

    Article  CAS  Google Scholar 

  2. Martin C, Zhang Y (2005) The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 6(11):838–849. doi:10.1038/nrm1761

    Article  CAS  Google Scholar 

  3. Trievel RC (2004) Structure and function of histone methyltransferases. Crit Rev Eukaryot Gene Expr 14(3):147–169

    Article  CAS  Google Scholar 

  4. Dillon SC, Zhang X, Trievel RC, Cheng X (2005) The SET-domain protein superfamily: protein lysine methyltransferases. Genome Biol 6(8):227. doi:10.1186/gb-2005-6-8-227

    Article  Google Scholar 

  5. Cheng X, Collins RE, Zhang X (2005) Structural and sequence motifs of protein (histone) methylation enzymes. Annu Rev Biophys Biomol Struct 34:267–294. doi:10.1146/annurev.biophys.34.040204.144452

    Article  CAS  Google Scholar 

  6. Xiao B, Jing C, Wilson JR, Walker PA, Vasisht N, Kelly G, Howell S, Taylor IA, Blackburn GM, Gamblin SJ (2003) Structure and catalytic mechanism of the human histone methyltransferase SET7/9. Nature 421(6923):652–656. http://www.nature.com/nature/journal/v421/n6923/suppinfo/nature01378_S1.html

    Article  CAS  Google Scholar 

  7. Xiao B, Wilson JR, Gamblin SJ (2003) SET domains and histone methylation. Curr Opin Struct Biol 13(6):699–705

    Article  CAS  Google Scholar 

  8. Li B, Carey M, Workman JL (2007) The role of chromatin during transcription. Cell 128(4):707–719. doi:10.1016/j.cell.2007.01.015

    Article  CAS  Google Scholar 

  9. Taverna SD, Li H, Ruthenburg AJ, Allis CD, Patel DJ (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040. doi:10.1038/nsmb1338

    Article  CAS  Google Scholar 

  10. Collins RE, Tachibana M, Tamaru H, Smith KM, Jia D, Zhang X, Selker EU, Shinkai Y, Cheng X (2005) In vitro and in vivo analyses of a Phe/Tyr switch controlling product specificity of histone lysine methyltransferases. J Biol Chem 280(7):5563–5570. doi:10.1074/jbc.M410483200

    Article  CAS  Google Scholar 

  11. Zhang X, Yang Z, Khan SI, Horton JR, Tamaru H, Selker EU, Cheng X (2003) Structural basis for the product specificity of histone lysine methyltransferases. Mol Cell 12(1):177–185

    Article  Google Scholar 

  12. Del Rizzo PA, Couture JF, Dirk LM, Strunk BS, Roiko MS, Brunzelle JS, Houtz RL, Trievel RC (2010) SET7/9 catalytic mutants reveal the role of active site water molecules in lysine multiple methylation. J Biol Chem 285(41):31849–31858. doi:10.1074/jbc.M110.114587

    Article  Google Scholar 

  13. Wu H, Min J, Lunin VV, Antoshenko T, Dombrovski L, Zeng H, Allali-Hassani A, Campagna-Slater V, Vedadi M, Arrowsmith CH, Plotnikov AN, Schapira M (2010) Structural biology of human H3K9 methyltransferases. PLoS One 5(1):e8570. doi:10.1371/journal.pone.0008570

    Article  Google Scholar 

  14. Bedford MT, Clarke SG (2009) Protein arginine methylation in mammals: who, what, and why. Mol Cell 33(1):1–13. doi:10.1016/j.molcel.2008.12.013

    Article  CAS  Google Scholar 

  15. Lee HW, Kim S, Paik WK (1977) S-adenosylmethionine: protein-arginine methyltransferase. Purification and mechanism of the enzyme. Biochemistry 16(1):78–85

    Article  CAS  Google Scholar 

  16. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031. doi:10.1016/j.febslet.2010.11.010

    Article  Google Scholar 

  17. Wysocka J, Allis CD, Coonrod S (2006) Histone arginine methylation and its dynamic regulation. Front Biosci 11:344–355

    Article  CAS  Google Scholar 

  18. Lin H, Truhlar DG (2007) QM/MM: What have we learned, where are we, and where do we go from here? Theor Chem Acc 117(2):185–199. doi:10.1007/s00214-006-0143-z

    Article  CAS  Google Scholar 

  19. Guo H, Salahub DR (2001) Origin of the high basicity of 2,7-dimethoxy-1,8-bis-(dimethylamino)naphthalene: Implications for enzyme catalysis. J Mol Struct Theochem 547:113–118. doi:10.1016/s0166-1280(01)00463-8

    Article  CAS  Google Scholar 

  20. Guo H, Paldus J (1997) Estimates of the structure and dimerization energy of polyacetylene from ab initio calculations on finite polyenes. Int J Quantum Chem 63(2):345–360. doi:10.1002/(sici)1097-461x(1997)63:2<345::aid-qua6>3.0.co;2-w

    Article  CAS  Google Scholar 

  21. Guo HB, Beahm RF, Guo H (2004) Stabilization and destabilization of the C-delta-h center dot center dot center dot O=C hydrogen bonds involving proline residues in helices. J Phys Chem B 108(46):18065–18072. doi:10.1021/jp0480192

    Article  CAS  Google Scholar 

  22. Warshel A, Levitt M (1976) Theoretical studies of enzymic reactions: dielectric, electrostatic and steric stabilization of the carbonium ion in the reaction of lysozyme. J Mol Biol 103(2):227–249

    Article  CAS  Google Scholar 

  23. Guo H, Wlodawer A, Nakayama T, Xu Q, Guo H (2006) Catalytic role of proton transfers in the formation of a tetrahedral adduct in a serine carboxyl peptidase. Biochemistry 45(30):9129–9137. doi:10.1021/bi060461i

    Article  CAS  Google Scholar 

  24. Guo HB, Rao N, Xu Q, Guo H (2005) Origin of tight binding of a near-perfect transition-state analogue by cytidine deaminase: Implications for enzyme catalysis. J Am Chem Soc 127(9):3191–3197. doi:10.1021/ja0439625

    Article  CAS  Google Scholar 

  25. Hu P, Wang S, Zhang Y (2008) COMP 169-How do SET-domain protein lysine methyltransferases achieve the methylation state specificity? An ab initio QM/MM molecular dynamics study, Abstr Pap Am Chem S 235

  26. Hu P, Wang S, Zhang Y (2008) How do SET-domain protein lysine methyltransferases achieve the methylation state specificity? Revisited by ab initio QM/MM molecular dynamics simulations. J Am Chem Soc 130(12):3806–3813. doi:10.1021/ja075896n

    Article  CAS  Google Scholar 

  27. Wang SL, Hu P, Zhang YK (2007) Ab initio quantum mechanical/molecular mechanical molecular dynamics simulation of enzyme catalysis: The case of histone lysine methyltransferase SET7/9. J Phys Chem B 111(14):3758–3764. doi:10.1021/jp067147i

    Article  CAS  Google Scholar 

  28. Xu Q, Guo H-B, Wlodawer A, Nakayama T, Guo H (2007) The QM/MM molecular dynamics and free energy simulations of the acylation reaction catalyzed by the serine-carboxyl peptidase kumamolisin-As. Biochemistry 46(12):3784–3792. doi:10.1021/bi061737p

    Article  CAS  Google Scholar 

  29. Xu Q, Guo H, Gorin A, Guo H (2007) Stabilization of a transition-state analogue at the active site of yeast cytosine deaminase: Importance of proton transfers. J Phys Chem B 111(23):6501–6506. doi:10.1021/jp0670743

    Article  CAS  Google Scholar 

  30. Xu Q, Guo H, Wlodawer A, Guo H (2006) The importance of dynamics in substrate-assisted catalysis and specificity. J Am Chem Soc 128(18):5994–5995. doi:10.1021/ja058831y

    Article  CAS  Google Scholar 

  31. Xu Q, Li L, Guo H (2010) Understanding the mechanism of deacylation reaction catalyzed by the serine carboxyl peptidase kumamolisin-as: insights from QM/MM free energy simulations. J Phys Chem B 114(32):10594–10600. doi:10.1021/jp102785s

    Article  CAS  Google Scholar 

  32. Yao J, Xu Q, Chen F, Guo H (2011) QM/MM free energy simulations of salicylic acid methyltransferase: effects of stabilization of TS-like structures on substrate specificity. J Phys Chem B 115(2):389–396. doi:10.1021/jp1086812

    Article  CAS  Google Scholar 

  33. Zhang X, Bruice TC (2008) Enzymatic mechanism and product specificity of SET-domain protein lysine methyltransferases. Proc Natl Acad Sci USA 105(15):5728–5732. doi:10.1073/pnas.0801788105

    Article  CAS  Google Scholar 

  34. Chu Y, Li G, Guo H (2013) QM/MM MD and free energy simulations of the methylation reactions catalyzed by protein arginine methyltransferase PRMT3. Can J Chem 91(7):605–612. doi:10.1139/cjc-2012-0483

    Article  CAS  Google Scholar 

  35. Guo H-B, Guo H (2007) Mechanism of histone methylation catalyzed by protein lysine methyltransferase SET7/9 and origin of product specificity. Proc Natl Acad Sci USA 104(21):8797–8802. doi:10.1073/pnas.0702981104

    Article  CAS  Google Scholar 

  36. Xu Q, Chu YZ, Guo HB, Smith JC, Guo H (2009) Energy triplets for writing epigenetic marks: insights from QM/MM free-energy simulations of protein lysine methyltransferases. Chem Eur J 15(46):12596–12599. doi:10.1002/chem.200902297

    Article  CAS  Google Scholar 

  37. Chu Y, Xu Q, Guo H (2010) Understanding energetic origins of product specificity of SET8 from QM/MM Free Energy Simulations: What causes the stop of methyl addition during histone lysine methylation? J Chem Theor Comput 6(4):1380–1389. doi:10.1021/ct9006458

    Article  CAS  Google Scholar 

  38. Chu Y, Yao J, Guo H (2012) QM/MM MD and free energy simulations of G9a-like protein (GLP) and its mutants: understanding the factors that determine the product specificity. Plos One 7(5). doi:10.1371/journal.pone.0037674

    Article  CAS  Google Scholar 

  39. Chuikov S, Kurash JK, Wilson JR, Xiao B, Justin N, Ivanov GS, McKinney K, Tempst P, Prives C, Gamblin SJ, Barlev NA, Reinberg D (2004) Regulation of p53 activity through lysine methylation. Nature 432(7015):353–360. doi:10.1038/nature03117

    Article  CAS  Google Scholar 

  40. Yao J, Chu Y, An R, Guo H (2012) Understanding product specificity of protein lysine methyltransferases from QM/MM molecular dynamics and free energy simulations: the effects of mutation on SET7/9 beyond the Tyr/Phe switch. J Chem Inf Model 52(2):449–456. doi:10.1021/ci200364m

    Article  CAS  Google Scholar 

  41. Tamaru H, Zhang X, McMillen D, Singh PB, Nakayama J, Grewal SI, Allis CD, Cheng XD, Selker EU (2003) Trimethylated lysine 9 of histone H3 is a mark for DNA methylation in Neurospora crassa. Nat Genet 34(1):75–79. doi:10.1038/ng1143

    Article  CAS  Google Scholar 

  42. Couture JF, Collazo E, Brunzelle JS, Trievel RC (2005) Structural and functional analysis of SET8, a histone H4 Lys-20 methyltransferase. Gene Dev 19(12):1455–1465. doi:10.1101/gad.1318405

    Article  CAS  Google Scholar 

  43. Nishioka K, Rice JC, Sarma K, Erdjument-Bromage H, Werner J, Wang YM, Chuikov S, Valenzuela P, Tempst P, Steward R, Lis JT, Allis CD, Reinberg D (2002) PR-Set7 is a nucleosome-specific methyltransferase that modifies lysine 20 of histone H4 and is associated with silent chromatin. Mol Cell 9(6):1201–1213. doi:10.1016/s1097-2765(02)00548-8

    Article  CAS  Google Scholar 

  44. Karachentsev D, Sarma K, Reinberg D, Steward R (2005) PR-Set7-dependent methylation of histone H4 Lys 20 functions in repression of gene expression and is essential for mitosis. Gene Dev 19(4):431–435. doi:10.1101/gad.1263005

    Article  CAS  Google Scholar 

  45. Couture JF, Dirk LMA, Brunzelle JS, Houtz RL, Trievel RC (2008) Structural origins for the product specificity of SET domain protein methyltransferases. P Natl Acad Sci USA 105(52):20659–20664. doi:10.1073/pnas.0806712105

    Article  CAS  Google Scholar 

  46. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T, Ohki M, Fukuda M, Takeda N, Niida H, Kato H, Shinkai Y (2002) G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Gene Dev 16(14):1779–1791. doi:10.1101/gad989402

    Article  CAS  Google Scholar 

  47. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T, Iwanari H, Sakihama T, Kodama T, Hamakubo T, Shinkai Y (2005) Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3–K9. Gene Dev 19(7):815–826. doi:10.1101/gad.1284005

    Article  CAS  Google Scholar 

  48. Zhang X, Cheng X (2003) Structure of the predominant protein arginine methyltransferase PRMT1 and analysis of its binding to substrate peptides. Structure 11(5):509–520

    Article  CAS  Google Scholar 

  49. Zhang X, Zhou L, Cheng X (2000) Crystal structure of the conserved core of protein arginine methyltransferase PRMT3. EMBO J 19(14):3509–3519. doi:10.1093/emboj/19.14.3509

    Article  CAS  Google Scholar 

  50. Rust HL, Zurita-Lopez CI, Clarke S, Thompson PR (2011) Mechanistic studies on transcriptional coactivator protein arginine methyltransferase 1. Biochemistry 50(16):3332–3345. doi:10.1021/bi102022e

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuzhuo Chu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chu, Y., Guo, H. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs. Interdiscip Sci Comput Life Sci 7, 309–318 (2015). https://doi.org/10.1007/s12539-015-0280-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12539-015-0280-y

Keywords

Navigation