Advertisement

Study on population dynamics for triple-linked food chain using a simulation-based approach

  • Kristiyan Balabanov
  • Tymoteusz Cejrowski
  • Doina LogofătuEmail author
  • Costin Bădică
Original Paper
  • 17 Downloads

Abstract

The procedures based on simulation have become a feasible testing method that does not require investing valuable resources to create a concrete prototype, especially with the increasing computational power of computers. Thus, design changes can be adopted and design errors can be fixed before it is too late. Simulation turns to be a cheap, safe and often more acceptable from an ethical perspective. In our work we summarize the results from the analysis with the help of a computational simulation of an elementary, yet analytically intractable problem scenario from the field of ecology. Our main goal is to confirm that even with a seemingly simple agent-based model and simulation, one could obtain plausible results regarding a system’s real life behavior. As a last point, we propose an efficient alternative for analysis, rather than the expensive simulation process.

Keywords

Population dynamics Ecological simulation Agent-based modeling Predator-prey relation Triple-linked food chain Evolution-inspired optimization 

Notes

References

  1. Angelov P, Kasabov N (2005) Evolving computational intelligence systems. In: Proceedings 1st international workshop on genetic fuzzy systems, Granada, Spain, pp 76–82Google Scholar
  2. Angelov P, Kasabov N (2006) Evolving intelligent systems, eIS. IEEE SMC eNewsLetter 15:1–13Google Scholar
  3. Angelov P (2014) Outside the box: an alternative data analytics framework. J Autom Mobile Robot Intell Syst 8(2):29–35MathSciNetGoogle Scholar
  4. Bădică A, Bădică C, Ivanović M, Dănciulescu D (2018) Multi-agent modelling and simulation of graph-based predator-prey dynamic systems: a BDI approach. Expert Syst 35(5):e12263Google Scholar
  5. Balabanov K, Fietz RG, Logofătu D (2017) Considerations in analyzing ecological dependent populations in a changing environment. In: Computational collective intelligence. ICCCI 2017. Lecture Notes in Computer Science, vol 10448. Springer, Cham, pp 223–232Google Scholar
  6. Balabanov K, Logofătu D, Badica C, Leon F (2018) A simulation-based analysis of interdependent populations in a dynamic ecological environment. In: Iliadis L, Maglogiannis I, Plagianakos V (eds) Artificial intelligence applications and innovations. AIAI 2018. IFIP advances in information and communication technology, vol 519. Springer, Cham, pp 437–448Google Scholar
  7. Begon M, Mortimer M, Thompson DJ (1996) Population ecology: a unified study of animals and plants, 3rd edn. Wiley-Blackwell, New YorkCrossRefGoogle Scholar
  8. Canyameres S, Logofătu D (2014) Platform for simulation and improvement of swarm behavior in changing environments. In: Iliadis L, Maglogiannis I, Papadopoulos H (eds) Artificial intelligence applications and innovations. AIAI 2014. IFIP advances in information and communication technology, vol 436. Springer, Berlin, Heidelberg, pp 121–129Google Scholar
  9. Cejrowski T, Szymański J, Mora H, Gil D (2018) Detection of the Bee Queen Presence using sound analysis, Asian conference on intelligent information and database systems. Springer, Cham, pp. 297–306Google Scholar
  10. Dewdney AK (1984) Sharks and fish Wage an ecological War on the toroidal planet Wa-Tor. Sci Am 251(6):14–22CrossRefGoogle Scholar
  11. DiStefano J III (2015) Dynamic systems biology modeling and simulation, 1st edn. Academic Press, Cambridge, pp 21–23 (January)Google Scholar
  12. Dougoud M, Vinckenbosch L, Rohr RP, Bersier L-F, Mazza C (2018) The feasibility of equilibria in large ecosystems: a primary but neglected concept in the complexity-stability debate. PLoS Comput Biol 14(2):1–18CrossRefGoogle Scholar
  13. Eiben AE, Smith JE (2015) Introduction to evolutionary computing, 2nd edn. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  14. F-Droid (2016) Wa-Tor—a simple population dynamics simulator, mobile application. https://f-droid.org/en/packages/com.dirkgassen.wator. Accessed 06 Nov 2018
  15. Farge M (2007) Numerical experimentation: a third way to study nature. Frontiers of computational science. Proceedings of the international symposium on frontiers of computational science 2005. Springer, Berlin, pp 15–30Google Scholar
  16. Floreano D, Mattiussi C (2008) Bio-inspired artificial intelligence: theories, methods, and technologies. MIT Press, CambridgeGoogle Scholar
  17. Hogeweg P, Hesper B (1983) The ontogeny of the interaction structure in bumble bee colonies: a MIRROR model. Behav Ecol Sociobiol 12(4):271–283CrossRefGoogle Scholar
  18. Hyde R, Angelov P, MacKenzie AR (2017) Fully online clustering of evolving data streams into arbitrarily shaped clusters. Inf Sci 382:96–114CrossRefGoogle Scholar
  19. Gardner M (1970) The fantastic combinations of John Conway’s new solitaire game “life”. Sci Am 223:120–123CrossRefGoogle Scholar
  20. Gardner M (1971) On cellular automata, self-reproduction, the Garden of Eden and the game “life”. Sci Am 224:112–117CrossRefGoogle Scholar
  21. Gerdes I, Klawonn F, Kruse R (2004) Evolutionäre Algorithmen: genetische Algorithmen—Strategien und Optimierungsverfahren—Beispielanwendungen. Vieweg, WiesbadenGoogle Scholar
  22. Harold FM (2001) The way of the cell. Oxford University Press, OxfordGoogle Scholar
  23. Hooper DU, Chapin III FS, Ewel JJ, Hector A, Inchausti P, Lavorel S, Lawton JH, Lodge DM, Loreau M, Naeem S, Schmid B, Setälä H, Symstad AJ, Vandermeer J, Wardle DA (2005) Effects of biodiversity on ecosystem functioning: a consensus of current knowledge. Ecologic monogr 75(1):3–35CrossRefGoogle Scholar
  24. Hoppensteadt F (2006) Predator-prey model. Scholarpedia 1(10):1563. http://www.scholarpedia.org/article/Predator-prey_model. Accessed 6 Nov 2018
  25. Huang Z, Rosowsky DV, Sparks PR (2001) Hurricane simulation techniques for the evaluation of wind-speeds and expected insurance losses. J Wind Eng Ind Aerodyn 89(7-8):605–617CrossRefGoogle Scholar
  26. Jafelice RM, da Silva PN (2011) Studies on population dynamics using cellular automata. In: Cellular automata-simplicity behind complexity. InTechGoogle Scholar
  27. Khoury DS, Myerscough MR, Barron AB (2011) A quantitative model of honey Bee colony population dynamics. PLoS ONE 6(4):e18491.  https://doi.org/10.1371/journal.pone.0018491. Accessed 06 Nov 2018
  28. Law AM (1997) Simulation modeling and analysis. McGraw-Hill Higher Education, New YorkGoogle Scholar
  29. Logofătu D, Sobol G, Stamate D, Balabanov K (2017) A novel space filling based approach to PSO algorithms for autonomous agents. In: Computational collective intelligence. ICCCI 2017. Lecture Notes in Computer Science, vol 10448. Springer, Cham, pp 361–370Google Scholar
  30. Logofătu D, Sobol G, Andersson C, Stamate D, Balabanov K, Cejrowski T (2018) Particle swarm optimization algorithms for autonomous robots with deterministic leaders using space filling movements. Evolving Syst 1–14.  https://doi.org/10.1007/s12530-018-9245-9. Accessed 6 Nov 2018
  31. Mallet DG, De Pillis LG (2006) A cellular automata model of tumor-immune system interactions. J Theor Biol 239(3):334–350MathSciNetCrossRefGoogle Scholar
  32. Masuch M, Hartman K, Schuster G (2006) Emotional agents for interactive environments. In: Creating, connecting and collaborating through computing. Fourth IEEE international conference on creating, connecting and collaborating through computing (C5’06). Berkeley, pp 96–102Google Scholar
  33. McCann KS (2000) The diversity-stability debate. Nature 405:228–233CrossRefGoogle Scholar
  34. Michalewicz Z (2008) Genetic algorithms + data structures := evolution programs, 3rd edn. Springer, BerlinzbMATHGoogle Scholar
  35. Norris JS (2004) Mission-critical development with open source software: lessons learned. IEEE Softw 21(1):42–49CrossRefGoogle Scholar
  36. Power DA, Watson RA, Szathmáry E, Mills R, Powers ST, Doncaster CP, Czapp B (2015) What can ecosystems learn? Expanding evolutionary ecology with learning theory. Biol Direct 10:1–24Google Scholar
  37. Reynolds CW (1987) Flocks, herds and schools: a distributed behavioral model. In: ACM SIGGRAPH computer graphics, vol 21, no 4, pp 25–34 (August) Google Scholar
  38. Rédei M (2005) John von Neumann: selected letters. American Mathematical Society, Providence, RICrossRefGoogle Scholar
  39. Southwood TRE, Henderson PA (2016) Ecological methods, 4th edn. Wiley-Blackwell, New York, pp 29–31Google Scholar
  40. Strauch M (2018) Modeling and simulation, cute simulations. https://maxstrauch.github.io/projects/mod-sim/index.html. Accessed 06 Nov 2018
  41. Tilman D, Reich PB, Knops JMH (2006) Biodiversity and ecosystem stability in a decade-long grassland experiment. Nature 441:629–632CrossRefGoogle Scholar
  42. Tschirhart J (2000) General equilibrium of an ecosystem. J Theor Biol 203:1–41CrossRefGoogle Scholar
  43. Ulam SM (1976) Adventures of a mathematician. Scribner, New YorkCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringFrankfurt University of Applied SciencesFrankfurtGermany
  2. 2.Faculty of Electronics, Telecommunications and InformaticsGdańsk University of TechnologyGdańskPoland
  3. 3.Department of Computer Sciences and Information TechnologyUniversity of CraiovaCraiovaRomania

Personalised recommendations