Skip to main content
Log in

Designing multi-layer quantum neural network controller for chaos control of rod-type plasma torch system using improved particle swarm optimization

  • Original Paper
  • Published:
Evolving Systems Aims and scope Submit manuscript

Abstract

Due to outstanding learning capabilities, neural networks have attracted a great deal of research interests and various structures for them have been presented. Quantum neural network is one these structures used in quantum calculations to improve learning capabilities of neural networks. In this paper, using a quantum neural network, a chaos controller for rod-type plasma torch system is developed. This system is extensively nonlinear and its dynamics shows considerable sensitivity to its parameters that makes it a good challenge for investigation of controllers’ performances. It is very common to utilize particle swarm optimization (PSO) algorithm to determine the parameters of neural networks. The novelty of this paper is changing the search space of the parameters in each particle based on that parameter’s value. Also, weaker particles will be deleted and new particles will be substituted. These modifications have enhanced the proposed algorithm performance by adding the ability of global search and also searching in a reasonable space. To highlight the superiority of the proposed algorithm, the results of eight meta-heuristics optimization algorithms such as artificial bee colony, social spider algorithm and imperialist competitive algorithm are presented for comparison. Simulation results show that the improved PSO (IPSO) proposed in this paper is superior to other algorithms from the viewpoint of convergence speed and accuracy. Moreover, in chaos control of a rod-type plasma torch system, the proposed method outperforms a PID controller and also a neural network controller using perceptron.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Al-Dunainawi Y, Abbod MF, Jizany A (2017) A new MIMO ANFIS-PSO based NARMA-L2 controller for nonlinear dynamic systems. Eng Appl Artif Intell 62:265–275

    Article  Google Scholar 

  • Åström KJ, McAvoy TJ (1992) Intelligent control. J Process Control 2(3):115–127

    Article  Google Scholar 

  • Atashpaz-Gargari E, Lucas C (2007) Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. Proceedings of the IEEE Congress on Evolutionary Computation, CEC 2007. IEEE, Singapore, pp 4661–4667

  • Billings SA, Zheng GL (1995) Radial basis function network configuration using genetic algorithms. Neural Netw 8(6):877–890

    Article  Google Scholar 

  • Boulos MI, Fauchais P, Pfender E (1994) The plasma state. Thermal plasmas, pp 1–47

  • Cai Y, Coyle TW, Azimi G, Mostaghimi J (2016) Superhydrophobic ceramic coatings by solution precursor plasma spray. Sci Rep 6:24670

    Article  Google Scholar 

  • Cao M, Shang F (2009) Quantum neural networks with application in adjusting PID parameters. In: International conference on information engineering and computer science. IEEE, Wuhan, pp 1–5

  • Castillo-Toledo B, Meda-Campaña JA (2002) The fuzzy discrete-time robust regulation problem: a LMI approach. In: Proceedings of the 41st IEEE conference on decision and control, vol 2. IEEE, Las Vegas, pp 2159–2164

  • Chen T, Amari SI (2001) Stability of asymmetric Hopfield networks. IEEE Trans Neural Netw 12(1):159–163

    Article  Google Scholar 

  • Ganjefar S, Ghassemi AA, Ahmadi MM (2014) Improving efficiency of two-type maximum power point tracking methods of tip-speed ratio and optimum torque in wind turbine system using a quantum neural network. Energy 67:444–453

    Article  Google Scholar 

  • Ganjefar S, Tofighi M, Karami H (2015) Fuzzy wavelet plus a quantum neural network as a design base for power system stability enhancement. Neural Netw 71:172–181

    Article  Google Scholar 

  • Garca-Gonzalo E, Fernndez-Martnez JL (2012) A brief historical review of particle swarm optimization (PSO). J Bioinf Intell Control 1(1):3–16

    Article  Google Scholar 

  • Gholipour R, Khosravi A, Mojallali H (2012) Bees algorithm based intelligent backstepping controller tuning for Gyro system. J Math Comput Sci 5(3):205–211

    Article  Google Scholar 

  • Gholipour R, Khosravi A, Mojallali H (2012) Intelligent backstepping control for genesio-tesi chaotic system using a chaotic particle swarm optimization algorithm. Int J Comput Electr Eng 4(5):618

    Article  Google Scholar 

  • Gholipour R, Khosravi A, Mojallali H (2013) Parameter estimation of Lorenz chaotic dynamic system using bees algorithm. IJE Trans C Asp 26(3):257–262

    Google Scholar 

  • Gholipour R, Khosravi A, Mojallali H (2013) Suppression of chaotic behavior in duffing-holmes system using back-stepping controller optimized by unified particle swarm optimization algorithm. Int J Eng Trans B Appl 26(11):1299–1306

    Google Scholar 

  • Gholipour R, Khosravi A, Mojallali H (2015) Multi-objective optimal backstepping controller design for chaos control in a rod-type plasma torch system using Bees algorithm. Appl Math Model 39(15):4432–4444

    Article  MathSciNet  Google Scholar 

  • Ghorui S, Das AK (2004) Theory of dynamic behavior in atmospheric pressure arc plasma devices: Part I: Theory and system behavior. IEEE Trans Plasma Sci 32(1):296–307

    Article  Google Scholar 

  • Ghorui S, Sahasrabudhe SN, Murthy PSS, Das AK, Venkatramani N (2000) Experimental evidence of chaotic behavior in atmospheric pressure arc discharge. IEEE Trans Plasma Sci 28(1):253–260

    Article  Google Scholar 

  • Ghorui S, Sahasrabudhe SN, Murty PSS, Das AK (2004) Theory of dynamic behavior in atmospheric pressure arc plasma devices: Part II: Validation of theory with experimental data. IEEE Trans Plasma Sci 32(1):308–315

    Article  Google Scholar 

  • Hernández Cortés T, Curtidor López AV, Rodríguez Valdez J, Meda Campaña JA, Tapia Herrera R, Rubio JDJ (2015) Synchronization of discrete-time chaotic fuzzy systems by means of fuzzy output regulation using genetic algorithm. Math Prob Eng 2015:1–18

    MathSciNet  MATH  Google Scholar 

  • James JQ, Li VO (2015) A social spider algorithm for global optimization. Appl Soft Comput 30:614–627

    Article  Google Scholar 

  • de Jess Rubio J (2017a) Stable Kalman filter and neural network for the chaotic systems identification. J Frankl Inst 354(16):7444–7462

    Article  MathSciNet  MATH  Google Scholar 

  • de Jess Rubio J (2017b) Discrete time control based in neural networks for pendulums. Appl Soft Comput. https://doi.org/10.1016/j.asoc.2017.04.056

  • Kak SC (1995) Quantum neural computing. Adv Imaging Electron Phys 94:259–313

    Article  Google Scholar 

  • Karaboga D, Basturk B (2008) On the performance of artificial bee colony (ABC) algorithm. Appl Soft Comput 8(1):687–697

    Article  Google Scholar 

  • Khorashadizadeh S, Fateh MM (2015) Robust task-space control of robot manipulators using Legendre polynomials for uncertainty estimation. Nonlinear Dyn 79(2):1151–1161

    Article  MathSciNet  Google Scholar 

  • Khorashadizadeh S, Fateh MM (2017) Uncertainty estimation in robust tracking control of robot manipulators using the Fourier series expansion. Robotica 35(2):310336

    Article  Google Scholar 

  • Kouda N, Matsui N, Nishimura H (2002) Image compression by layered quantum neural networks. Neural Process Lett 16(1):67–80

    Article  MATH  Google Scholar 

  • Kwak HS, Uhm HS, Hong YC, Choi EH (2015) Disintegration of carbon dioxide molecules in a microwave plasma torch. Sci Rep 5:18436

    Article  Google Scholar 

  • Lee TH, Park JH (2017) Improved criteria for sampled-data synchronization of chaotic Lur’e systems using two new approaches. Nonlinear Anal Hybrid Syst 24:132–145

    Article  MathSciNet  MATH  Google Scholar 

  • Leung FHF, Lam HK, Ling SH, Tam PKS (2003) Tuning of the structure and parameters of a neural network using an improved genetic algorithm. IEEE Trans Neural Netw 14(1):79–88

    Article  Google Scholar 

  • Malekzadeh M, Sadati J, Alizadeh M (2016) Adaptive PID controller design for wing rock suppression using self-recurrent wavelet neural network identifier. Evol Syst 7(4):267–275

    Article  Google Scholar 

  • Matsui N, Nishimura H, Peper F (2005) An examination of qubit neural network in controlling an inverted pendulum. Neural Process Lett 22(3):277–290

    Article  Google Scholar 

  • Matsui N, Takai M, Nishimura H (2000) A network model based on qubitlike neuron corresponding to quantum circuit. Electr Commun Jpn Part III Fund Electr Sci 83(10):67–73

    Article  Google Scholar 

  • Matsui N, Takai M, Nishimura H (1999) A learning network based on qubit-like neuron model. In: Proceedings of the seventeenth IASTED international conference on applied informatics. Innsbruck, Austria, pp 679–682

  • Meda-Campaña JA, Castillo-Toledo B, Zuniga V (2006) On the nonlinear fuzzy regulation for under-actuated systems. In: 2006 IEEE international conference fuzzy systems. IEEE, Vancouver, pp 2195–2202

  • Meda-Campaña JA, Castillo-Toledo B, Chen G (2009) Synchronization of chaotic systems from a fuzzy regulation approach. Fuzzy Sets Syst 160(19):2860–2875

    Article  MathSciNet  MATH  Google Scholar 

  • Minsky M, Papert S (1969) Perceptrons. MIT Press, Oxford

    MATH  Google Scholar 

  • Narendra KS, Parthasarathy K (1990) Identification and control of dynamical systems using neural networks. IEEE Trans Neural Netw 1(1):4–27

    Article  Google Scholar 

  • Nian F, Liu W (2016) Hybrid synchronization of heterogeneous chaotic systems on dynamic network. Chaos Solitons Fractals 91:554–561

    Article  MathSciNet  MATH  Google Scholar 

  • Nicholson DR, Nicholson DR (1983) Introduction to plasma theory. Wiley, Hoboken

  • Poli R, Kennedy J, Blackwell T (2007) Particle swarm optimization. Swarm Intell 1(1):33–57

    Article  Google Scholar 

  • Páramo-Carranza LA, Meda-Campaña JA, de Jesús Rubio J, Tapia-Herrera R, Curtidor-López AV, Grande-Meza A, Cázares-Ramírez I (2017) Discrete-time Kalman filter for Takagi–Sugeno fuzzy models. Evol Syst 8(3):211–219

    Article  Google Scholar 

  • Rao RV, Savsani VJ, Vakharia DP (2012) Teaching–learning-based optimization: an optimization method for continuous non-linear large scale problems. Inf Sci 183(1):1–15

    Article  MathSciNet  Google Scholar 

  • Rudas IJ, Fodor J (2008) Intelligent systems. Int J Comput Commun Control 3(3):132–138

    Google Scholar 

  • Salimi H (2015) Stochastic fractal search: a powerful metaheuristic algorithm. Knowl Based Syst 75:1–18

    Article  Google Scholar 

  • Shen Z, Li J (2017) Chaos control for a unified chaotic system using output feedback controllers. Math Comput Simul 132:208–219

    Article  MathSciNet  Google Scholar 

  • Shi Y, Eberhart RC (1999) Empirical study of particle swarm optimization. Evol Comput. CEC 99. Proc 1999 Congress 3:1945-1950

  • Simon D (2008) Biogeography-based optimization. IEEE Trans Evol Comput 12(6):702–713

    Article  Google Scholar 

  • Sturrock PA (1994) Plasma physics: an introduction to the theory of astrophysical, geophysical and laboratory plasmas. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Takahashi K, Kurokawa M, Hashimoto M (2012) Controller application of a multi-layer quantum neural network with qubit neurons. J Adv Mech Des Syst Manuf 6(4):526–540

    Article  Google Scholar 

  • Takahashi K, Kurokawa M, Hashimoto M (2014) Multi-layer quantum neural network controller trained by real-coded genetic algorithm. Neurocomputing 134:159–164

    Article  Google Scholar 

  • Widrow B, Lehr MA (1990) 30 years of adaptive neural networks: perceptron, madaline, and backpropagation. Proc IEEE 78(9):1415–1442

    Article  Google Scholar 

  • Yao X (1993) A review of evolutionary artificial neural networks. Int J Intell Syst 8(4):539–567

    Article  MathSciNet  Google Scholar 

  • Zhang WB, Zhu GY (2011) Comparison and application of four versions of particle swarm optimization algorithms in the sequence optimization. Expert Syst Appl 38(7):8858–8864

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmaeil Salahshour.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salahshour, E., Malekzadeh, M., Gholipour, R. et al. Designing multi-layer quantum neural network controller for chaos control of rod-type plasma torch system using improved particle swarm optimization. Evolving Systems 10, 317–331 (2019). https://doi.org/10.1007/s12530-018-9222-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12530-018-9222-3

Keywords

Navigation