Perceived user satisfaction and intention to use massive open online courses (MOOCs)

Abstract

The aim of the present work is to contribute to the study of use intention for technologies related to the increasingly popular massive open online courses (MOOCs). Informed by a scientific literature review, the work proposes a behavioral model to explain use intention via various constructs. The results of the analysis verify the effect of user perceived satisfaction and autonomous motivation as the strongest predictors of use intention. The analysis also shows that perceived satisfaction is affected by the quality of the course, its entertainment value and its usefulness. The latter variable is also a major factor in explaining user emotions. The study provides an original focus in the study of perceived satisfaction and MOOC use intention by extending the models proposed in previous published literature in this emerging field.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2

References

  1. Adamopoulos, P. (2013). What makes a great MOOC? An interdisciplinary analysis of student retention in online courses. In 34th International conference on information systems: ICIS 2013 Association for Information Systems.

  2. Aguaded, I., & Medina-Salguero, R. (2015). Criterios de calidad para la valoración y gestión de MOOC. RIED: Revista Iberoamericana de Educación a Distancia,18(2), 119–143. https://doi.org/10.5944/ried.18.2.13579.

    Article  Google Scholar 

  3. Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes,50(2), 179–211.

    Google Scholar 

  4. Alexandron, G., Yoo, L. Y., Ruipérez-Valiente, J. A., Lee, S., & Pritchard, D. E. (2019). Are MOOC learning analytics results trustworthy? With fake learners, they might not be! International Journal of Artificial Intelligence in Education,29, 484–506.

    Article  Google Scholar 

  5. Alraimi, K. M., Zo, H., & Ciganek, A. P. (2015). Understanding the MOOCs continuance: The role of openness and reputation. Computers and Education,80, 28–38. https://doi.org/10.1016/j.compedu.2014.08.006.

    Article  Google Scholar 

  6. Ayala, C., Dick, G., & Treadway, J. (2014). The MOOCs are coming! Revolution or fad in the Business School? Communications of the Association for Information Systems: Vol. 35, Article 12. Available at http://aisel.aisnet.org/cais/vol35/iss1/12.

  7. Beaudry, A., & Pinsonneault, A. (2010). The other side of acceptance: Studying the direct and indirect effects of emotions on information technology use. MIS Quarterly,34(4), 689–710. https://doi.org/10.2307/25750701.

    Article  Google Scholar 

  8. Brahimi, T., & Sarirete, A. (2015). Learning outside the classroom through MOOCs. Computers in Human Behavior,51, 604–609. https://doi.org/10.1016/j.chb.2015.03.013.

    Article  Google Scholar 

  9. Camilleri, A. F., Ehlers, U. D., Palowski, J. (2014). State of the art review of quality issues related to open educational resources (OER). JRC IPTS report. Luxembourg: Publication Offices of the European Union. http://doi.org/10.2791/80171.

  10. Castañeda, J. A., Muñoz-Leiva, F., & Luque, T. (2007). Web acceptance model (WAM): Moderating effects of user experience. Information and Management,44(4), 384–396. https://doi.org/10.1016/j.im.2007.02.003.

    Article  Google Scholar 

  11. Castaño, C., Maiz, I., & Garay, U. (2015). Percepción de los participantes sobre el aprendizaje en un MOOC. RIED. Revista Iberoamericana De Educación a Distancia,18(2), 197–221. https://doi.org/10.5944/ried.18.2.13444.

    Article  Google Scholar 

  12. Chang, J. J., Lin, W. S., & Chen, H. R. (2019). How attention level and cognitive style affect learning in a MOOC environment? Based on the perspective of brainwave analysis. Computers in Human Behavior,100, 209–217.

    Article  Google Scholar 

  13. Cigdem, H., & Ozturk, M. (2016). Factors affecting students’ behavioral intention to use LMS at a Turkish post-secondary vocational school. International Review of Research in Open and Distance Learning. https://doi.org/10.19173/irrodl.v17i3.2253.

    Article  Google Scholar 

  14. Conole, G. (2016). MOOCs as disruptive technologies: strategies for enhancing the learner experience and quality of MOOCs. RED. Revista de Educación a Distancia. https://doi.org/10.6018/red/50/2.

    Article  Google Scholar 

  15. Daniel, J., Vázquez, E., & y Gisbert, M. (2015). El futuro de los MOOC: ¿aprendizaje adaptativo o modelo de negocio? RUSC. Universities and Knowledge Society Journal,12(1), 64–74. https://doi.org/10.7238/rusc.v12i1.2475.

    Article  Google Scholar 

  16. Del Barrio, S., Arquero, J. L., & Romero-Frías, E. (2015). Personal learning environments acceptance model: The role of need for cognition, e-learning satisfaction and students’ perceptions. Journal of Educational Technology and Society,18(3), 129–141.

    Google Scholar 

  17. Del Barrio, S. & Luque, T (2012). Análisis de Ecuaciones Estructurales, en Luque, T. (coord.), Técnicas de análisis de datos en investigación de mercados. Madrid, España: Ediciones Pirámide.

  18. Fornell, C., & Larcker, D. F. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research. https://doi.org/10.2307/3151312.

    Article  Google Scholar 

  19. Fortin, D. R., & Dholakia, R. R. (2005). Interactivity and vividness effects on social presence and involvement with a web-based advertisement. Journal of Business Research,58, 387–396. https://doi.org/10.1016/S0148-2963(03)00106-1.

    Article  Google Scholar 

  20. García-Martínez, C., Cerezo, R., Bermúdez, M., & Romero, C. (2019). Improving essay peer grading accuracy in massive open online courses using personalized weights from student’s engagement and performance. Journal of Computer Assisted Learning. https://doi.org/10.1111/jcal.12316.

    Article  Google Scholar 

  21. Gupta, K. P. (2019). Investigating the adoption of MOOCs in a developing country. Interactive Technology and Smart Education. https://doi.org/10.1108/itse-06-2019-0033.

    Article  Google Scholar 

  22. Hair, J. F., Black, W. C., Babin, B. J., & Anderson, R. E. (2010). Multivariate data analysis. London: Pearson.

    Google Scholar 

  23. Hibbeln, M. T., Jenkins, J. L., Schneider, C., Valacich, J., & Weinmann, M. (2016). Inferring negative emotion from mouse cursor movements. MIS Quarterly,41(1), 1–21.

    Article  Google Scholar 

  24. Hone, K. S., & El Said, G. R. (2016). Exploring the factors affecting MOOC retention: A survey study. Computers and Education,98, 157–168. https://doi.org/10.1016/j.compedu.2016.03.016.

    Article  Google Scholar 

  25. Hood, N., & Littlejohn, A. (2016). MOOC Quality: The need for new measures. Journal of Learning for Development-JL 4D, 3(3). Retrieved from http://www.jl4d.org/index.php/ejl4d/article/view/165.

  26. Hu, X., Wu, G., Wu, Y., & Zhang, H. (2010). The effects of Web assurance seals on consumers’ initial trust in an online vendor: A functional perspective. Decision Support Systems,48(2), 407–418.

    Article  Google Scholar 

  27. Huang, L., Zhang, J., & Liu, Y. (2017). Antecedents of student MOOC revisit intention: Moderation effect of course difficulty. International Journal of Information Management,37(2), 84–91. https://doi.org/10.1016/j.ijinfomgt.2016.12.002.

    Article  Google Scholar 

  28. Huanhuan, W., & Xu, L. (2015). Research on technology adoption and promotion strategy of MOOC. The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference proceedings (pp. 907–910). http://doi.org/10.1109/ICSESS.2015.7339201.

  29. Hyo-Jeong So, Y. J. J., & Kim, H. E. (2018). Examination of relationships among students’ self-determination, technology acceptance, satisfaction, and continuance intention to use K-MOOCs. Computer and Education. https://doi.org/10.1016/j.compedu.2018.01.003.

    Article  Google Scholar 

  30. Inamorato dos Santos, A., Punie, y., Castaño-Muñoz, J. (2016). Opening up education: A support framework for higher education institutions. JRC Science for Policy Report, EUR 27938 EN. https://doi.org/10.2791/293408.

  31. Kay, R. H., & Loverock, S. (2008). Assessing emotions related to learning new software: The computer emotion scale. Computers in Human Behavior,24(4), 1605–1623. https://doi.org/10.1016/j.chb.2007.06.002.

    Article  Google Scholar 

  32. Kizilcec, R. F., Piech, C., & Schneider, E. (2013). Deconstructing disengagement: analyzing learner subpopulations in massive open online courses. In Proceedings of the third international conference on learning analytics and knowledge (pp. 170–179). New York, NY: ACM. https://doi.org/10.1145/2460296.2460330.

  33. Lee, M. C. (2010). Explaining and predicting users’ continuance intention toward e-learning: An extension of the expectation–confirmation model. Computers and Education,54(2), 506–516. https://doi.org/10.1016/j.compedu.2009.09.002.

    Article  Google Scholar 

  34. Lee, B. C., Yoon, J. O., & Lee, I. (2009). Learners’ acceptance of e-learning in South Korea: Theories and results. Computers and Education,53(4), 1320–1329. https://doi.org/10.1016/j.compedu.2009.06.014.

    Article  Google Scholar 

  35. Li, K. (2019). MOOC learners’ demographics, self-regulated learning strategy, perceived learning and satisfaction: A structural equation modeling approach. Computers and Education,132, 16–30.

    Article  Google Scholar 

  36. Liébana-Cabanillas, F., Muñoz-Leiva, F., & Sánchez-Fernández, J. (2018). A global approach to the analysis of user behavior in mobile payment systems in the new electronic environment. Service Business,12(1), 25–64.

    Article  Google Scholar 

  37. Lin, T. C., & Huang, C. C. (2008). Understanding knowledge management system usage antecedents: An integration of social cognitive theory and task technology fit. Information and Management,45(6), 410–417. https://doi.org/10.1016/j.im.2008.06.004.

    Article  Google Scholar 

  38. Liyanagunawardena, T. R., Adams, A. A., & Williams, S. A. (2013). MOOCs: A systematic study of the published literature 2008–2012. International Review of Research in Open and Distributed Learning,14(3), 202–227. https://doi.org/10.19173/irrodl.v14i3.1455.

    Article  Google Scholar 

  39. Ma, L., & Lee, C. S. (2019). Investigating the adoption of MOOC s: A technology user-environment perspective. Journal of Computer Assisted learning,35(1), 89–98.

    Article  Google Scholar 

  40. Magen-Nagar, N., & Cohen, L. (2017). Learning strategies as a mediator for motivation and a sense of achievement among students who study in MOOCs. Education and Information Technologies,22(3), 1271–1290. https://doi.org/10.1007/s10639-016-9492-y.

    Article  Google Scholar 

  41. Mikalef, P., Pappas, I. O., & Giannakos, M. (2016). An integrative adoption model of video-based learning. The International Journal of Information and Learning Technology,33(4), 219–235. https://doi.org/10.1108/ijilt-01-2016-0007.

    Article  Google Scholar 

  42. Mohammadi, H. (2015). Investigating users’ perspectives on e-learning: An integration of TAM and IS success model. Computers in Human Behavior,45, 359–374. https://doi.org/10.1016/j.chb.2014.07.044.

    Article  Google Scholar 

  43. Mohapatra, S., & Mohanty, R. (2016). Adopting MOOCs for afforable quality education. Education and Information Technologies. https://doi.org/10.1007/s10639-016-9526-5.

    Article  Google Scholar 

  44. Mora, C. E. (2011). La calidad del servicio Y la satisfacción del consumidor. REMark,10(2), 146. https://doi.org/10.5585/remark.v10i2.2212.

    Article  Google Scholar 

  45. Pappas, I. O., Giannakos, M. N., & Mikalef, P. (2017). Investigating students’ use and adoption of with-video assignments: Lessons learnt for video-based open educational resources. Journal of Computing in Higher Education,29(1), 160–177. https://doi.org/10.1007/s12528-017-9132-6.

    Article  Google Scholar 

  46. Pérez-Sanagustín, M., Hilliger, I., Alario-Hoyos, C., Kloos, C. D., & Rayyan, S. (2017). H-MOOC framework: Reusing MOOCs for hybrid education. Journal of Computing in Higher Education,29(1), 47–64.

    Article  Google Scholar 

  47. Pursel, B. K., Zhang, L., Jablokow, K. W., Choi, G. W., & Velegol, D. (2016). Understanding MOOC students: Motivations and behaviours indicative of MOOC completion. Journal of Computer Assisted Learning,32(3), 202–217.

    Article  Google Scholar 

  48. Puska, A., Ejubovic, A., & Beganovic, A. I. (2016). Student feedback as a guideline for higher education quality enhancement. Ekonomika,62(4), 39–53. https://doi.org/10.5937/ekonomika1604039P.

    Article  Google Scholar 

  49. Qin, M., & Xu, S. (2007). An extended expectation confirmation model for information systems continuance. In 2007 International conference on wireless communications, networking and mobile computing (pp. 3874–3877). IEEE. https://doi.org/10.1109/wicom.2007.959.

  50. Rabin, E., Kalman, Y. M., & Kalz, M. (2019). An empirical investigation of the antecedents of learner-centered outcome measures in MOOCs. International Journal of Educational Technology in Higher Education,16(1), 14.

    Article  Google Scholar 

  51. Ray, S., Ow, T., & Kim, S. S. (2011). Security assurance: How online service providers can influence security control perceptions and gain trust. Decision Sciences,42(2), 391–412.

    Article  Google Scholar 

  52. Reich, J., & Ruipérez-Valiente, J. A. (2019). The MOOC pivot. Science,363(6423), 130–131.

    Article  Google Scholar 

  53. Riehemann, J., Hellmann, J. H., & Jucks, R. (2018) “Your words matter!” Relevance of individual participation in xMOOCs. Active Learning in Higher Education. https://doi.org/10.1177/1469787418779154.

  54. Rienties, B., & Rivers, B. A. (2014). Measuring and understanding learner emotions: Evidence and prospects. Learning Analytics Review,1, 1–28.

    Google Scholar 

  55. Roca, J. C., & Gagné, M. (2008). Understanding e-learning continuance intention in the workplace: A self-determination theory perspective. Computers in Human Behavior,24(4), 1585–1604. https://doi.org/10.1016/j.chb.2007.06.001.

    Article  Google Scholar 

  56. Román, A. P., González, A. B., & Idoeta, C. M. (2014). Análisis del proceso de generación de lealtad en el entorno on-line a través de la calidad del servicio y de la calidad de la relación. Revista Europea de Dirección y Economía de la Empresa,23(4), 175–183. https://doi.org/10.1016/j.redee.2014.09.003.

    Article  Google Scholar 

  57. Ruiz, M., Palací, F. J., Salcedo, A., & Garcés, J. (2010). E-satisfacción: Una aproximación cualitativa. Acción psicológica. http://doi.org/10.5944/ap.7.1.209.

  58. Shahijan, M. K., Rezaei, S., & Amin, M. (2016). International students’ course satisfaction and continuance behavioral intention in higher education setting: An empirical assessment in Malaysia. Asia Pacific Education Review,17(1), 41–62. https://doi.org/10.1007/s12564-015-9410-9.

    Article  Google Scholar 

  59. Shanghai Ranking (2017). Global Ranking of Academic Subjects. Retrieved from https://drive.google.com/file/d/0Bw2rAawlHlvBYndVM2x5cHREdWs/view.

  60. Sivo, S. A., Fan, X., Witta, E. L., & Willse, J. T. (2006). The search for “optimal” cutoff properties: Fit index criteria in structural equation modeling. The Journal of Experimental Education,74(3), 267–288.

    Article  Google Scholar 

  61. Song, Z. X., Cheung, M. F., & Prud’Homme, S. (2017). Theoretical frameworks and research methods in the study of MOOC/e-learning behaviors: A theoretical and empirical review. In New ecology for educationCommunication X learning (pp. 47–65). Springer, Singapore. https://doi.org/10.1007/978-981-10-4346-8_5.

  62. Sun, P. C., Tsai, T. J., Finger, G., Chen, Y. Y., & Yeh, D. (2008). What drives a successful e-Learning? An empirical investigation of the critical factors influencing learner satisfaction. Computers and Education,50(4), 1183–1202. https://doi.org/10.1016/j.compedu.2006.11.007.

    Article  Google Scholar 

  63. Tang, H., Xing, W., & Pei, B. (2018). Exploring the temporal dimension of forum participation in MOOCs. Distance Education,39(3), 353–372.

    Article  Google Scholar 

  64. Teo, T., Sang, G., Mei, B., & Hoi, C. K. W. (2019). Investigating pre-service teachers’ acceptance of Web 2.0 technologies in their future teaching: A Chinese perspective. Interactive Learning Environments,27(4), 530–546.

    Article  Google Scholar 

  65. Thong, J. Y. L., Hong, S. J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation–confirmation model for information technology continuance. International Journal of Human-Computer Studies,64(9), 799–810. https://doi.org/10.1016/j.ijhcs.2006.05.001.

    Article  Google Scholar 

  66. Udo, G. J., Bagchi, K. K., & Kirs, P. J. (2011). Using SERVQUAL to assess the quality of e-learning experience. Computers in Human Behavior,27(3), 1272–1283. https://doi.org/10.1016/j.chb.2011.01.009.

    Article  Google Scholar 

  67. Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science,46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926.

    Article  Google Scholar 

  68. Wells, W. D. (1997). Measuring advertising effectiveness. London: Routledge.

    Google Scholar 

  69. Wojciechowski, R., & Cellary, W. (2013). Evaluation of learners’ attitude toward learning in ARIES augmented reality environments. Computers and Education,68, 570–585. https://doi.org/10.1016/j.compedu.2013.02.014.

    Article  Google Scholar 

  70. Xing, W. (2018). Exploring the influences of MOOC design features on student performance and persistence. Distance Education. https://doi.org/10.1080/01587919.2018.1553560.

    Article  Google Scholar 

  71. Xiong, Y., Li, H., Kornhaber, M. L., Suen, H. K., Pursel, B., & Goins, D. D. (2015). Examining the relations among student motivation, engagement, and retention in a MOOC: A structural equation modeling approach. Global Education Review,2(3), 23–33.

    Google Scholar 

  72. Xu, F. (2015). Research of the MOOC study behavior influencing factors. In Proceedings of international conference on advanced information and communication technology for education (pp. 18–22). Amsterdam: Atlantis Press. https://doi.org/10.2991/icaicte-15.2015.5.

  73. Yuan, L., & Powell, S. (2013). MOOCs and open education: Implications for higher education. White Paper. Retrieved from http://publications.cetis.org.uk/wp-content/uploads/2013/03/MOOCs-and-Open-Education.pdf.

  74. Zambrano, J. (2016). Factores predictores de la satisfacción de estudiantes de cursos virtuales. RIED. Revista Iberoamericana de Educación a Distancia, 19(2), 217–235. http://doi.org/10.5944/ried.19.2.15112.

  75. Zhang, J. (2016). Can MOOCs be interesting to students? An experimental investigation from regulatory focus perspective. Computers and Education,95, 340–351. https://doi.org/10.1016/j.compedu.2016.02.003.

    Article  Google Scholar 

  76. Zhou, M. (2016). Chinese university students’ acceptance of MOOCs: A self-determination perspective. Computers and Education,92, 194–203. https://doi.org/10.1016/j.compedu.2015.10.012.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Liébana-Cabanillas.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Scales and items used in the study

Appendix: Scales and items used in the study

Construct Questionnaire items adapted to the present study References
Perceived ease of use (PEU) 1. I find it easy to be good at using MOOCs
2. I find it easy to learn how to work with MOOC systems
3. I find it easy to get the MOOC system to do what 4. I want it to
5. I find it easy to use MOOCs
Sun et al. (2008)
Perceived usefulness (PU) 1. Using MOOCs would improve my learning performance
2. Using MOOCs would increase my learning efficiency
3. Using MOOCs would be useful for me
Alraimi et al. (2015)
Emotions (EM) 1. Using MOOCs would be pleasant
2. Using MOOCs would be exciting
3. Using MOOCs would make me feel good
Pappas et al. (2017)
Vividness of content (VC) 1. The educational process of MOOCs seems lively
2. The educational process of MOOCs seems energetic
3. The educational process of MOOCs seems to be enlivening for the senses
4. I could take in the learning process of MOOCs via different sensory channels
Huang et al. (2017)
Perceived interactivity (PI) 1. The interactivity between teacher and student on a MOOC would enable me to better understand the content
2. The interactivity between teacher and student on a MOOC would enable me to learn more from the course
3. The interactivity between teacher and student on a MOOC would enable me to use summaries and compare them with others
4. The interactivity between teacher and student on a MOOC would enable me to resolve my questions
Huang et al. (2017)
Controlled motivation (CM) 1. I would use a MOOC if other people told me I should do so
2. I would feel under pressure from my friends/family/partner to use MOOCs
3. I would use a MOOC if my friends/family/partner were to tell me I should do so
4. I would feel embarrassed if I were not to use MOOCs in order to learn
Zhou (2016)
Autonomous motivation (AM) 1. I think using MOOCs is important for learning
2. I value the benefits of using MOOCs
3. I think it’s important to make an effort to use MOOCs to learn
4. I would study via MOOCs because it is important to do so
5. I would enjoy myself studying via MOOCs
Zhou (2016)
Perceived entertainment (PE) 1. Using MOOCs seems pleasant
2. I would enjoy myself using MOOCs
3. I would find it fun to use MOOCs
Alraimi et al. (2015)
Perceived course quality (PCQ) 4. The fact that MOOCs are conducted via the Internet means they are of better quality than other (offline) courses
5. The quality of MOOCs may compare favorably with that of other courses I have undertaken
6. I do not think the quality of a MOOC is influenced by the fact that it is undertaken via the Internet
Sun et al. (2008)
Perceived satisfaction (PS) 1. I would be satisfied with my decision to undertake a MOOC
2. If I had the chance to undertake a MOOC, I would be delighted to do so
3. I would be very satisfied with a MOOC
4. I feel that MOOCs are well-suited to my needs
5. I will undertake as many MOOCs as I can
6. I find the way MOOCs work disappointing
7. Undertaking a MOOC would be more difficult than other courses I have taken
Sun et al. (2008)
Use intention (UI) 1. I intend to use MOOCs in the future
2. My overall intention to use MOOCs in the future is very high
3. I would use MOOCs regularly in the future
4. I would think about using MOOCs
Pappas et al. (2017)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Pozón-López, I., Higueras-Castillo, E., Muñoz-Leiva, F. et al. Perceived user satisfaction and intention to use massive open online courses (MOOCs). J Comput High Educ (2020). https://doi.org/10.1007/s12528-020-09257-9

Download citation

Keywords

  • MOOCs
  • Massive open online courses
  • Use intention
  • Perceived satisfaction
  • Structural equation model