Advertisement

Marine Biodiversity

, Volume 48, Issue 2, pp 783–811 | Cite as

Distributional patterns of isopods (Crustacea) in Icelandic and adjacent waters

  • Saskia Brix
  • Bente Stransky
  • Marina Malyutina
  • Krzysztof Pabis
  • Jörundur Svavarsson
  • Torben Riehl
Biodiversity of Icelandic Waters
  • 106 Downloads
Part of the following topical collections:
  1. Biodiversity of Icelandic Waters

Abstract

Since the 1990s, the marine benthos of the Greenland–Iceland–Faeroe (GIF) Ridge has been sampled through the BIOICE (Benthic Invertebrates of Icelandic waters) and subsequent IceAGE (Icelandic Marine Animals: Genetics and Ecology) projects. Isopod crustaceans formed one of the prominent macrofaunal groups. Most isopod families occurred on both sides of the ridge, but showed side-specific abundance patterns reflecting known distribution from the literature. Our results from 35,536 isopod specimens from 55 epibenthic sled stations show a depth pattern at the family level indicating typical shallow water families like, for example, Paramunnidae or typical deep-water families like, for example, Haploniscidae and Ischnomesidae, while other families did not show a clear depth trend. We hypothesize that the ridge influences the distribution of the families through its effects on the hydrography and sediment characteristics. Total organic carbon (TOC) and mud content significantly explained isopod family distributions, possibly reflecting different habitat use and lifestyle (e.g., infaunal, epifaunal). Our analysis of a subset of 27 selected BIOICE and IceAGE stations and 100 isopod species (22,574 specimens), mostly covering the upper 1000 m depths between Iceland and Norway along the Iceland–Faeroe Ridge (IFR), resulted in four main species assemblages differing in species diversity. Whereas north of the IFR, we found 76 species; south of the IFR, we found 52 species; 40 species occurred both north and south of the IFR. Although the subset of selected stations is limited to a comparably small portion of the IceAGE sampling grid and to a comparably restricted depth range of the upper 1000 m, our result shows the slope area of Northeast Iceland and around the Faeroes and the Norwegian Channel with the highest number of species, especially stations in the thermocline between 400 and 800 m depth, where we observed the turnover from shallow to deep-water faunal elements.

Keywords

Subpolar Benthos Isopoda Depth Gradient Thermocline Diversity Biogeography 

Notes

Acknowledgements

We would like to thank the staff of the Marine Science Centre, Sandgerði, Iceland, in particular Sigrún Haraldsdóttir, and the staff of the DZMB in Hamburg, Germany, namely Karen Jeskulke, Antje Fischer, Nicole Gatzemeier and Sven Hoffmann, for sorting the isopods to family level. We wish to thank Sarah Schnurr, Moritz Häring, Maggy Kurth, and Daniela Töbelmann for their contributions, especially Maggy Kurth who provided the first glance on the complete dataset with her bachelor thesis. Angelika Brandt kindly supervised the two bachelor theses of Maggy Kurth and Moritz Häring and the project study of Daniela Töbelmann at the University of Hamburg. We wish to thank Captain Michael Schneider and the crew of RV Meteor and Captain Klaus Ricke and the crew of RV Poseidon for their support during the cruises with the respective vessels in 2011 and 2013. Marina Malyutina was able to visit Hamburg and determine the munnopsid isopods through the financial support of a “Senckenberg taxonomic grant” in spring 2017. Robert Jennings from the Temple University in Philadelphia kindly did the native speaker corrections of the English of this manuscript.

Funding

The German Science Foundation provided financial support for the expedition logistics and sample sorting under contract no. BR3843/5-1.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest. All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors. Permits and approval of field or observational studies have been obtained by the authors. Museum collection numbers are not provided, but a statement is given: So far all material is planned for the final storage in two museums: Zoological Museum Hamburg and Senckenberg Crustacean Collection in Frankfurt. All IceAGE isopod specimens and the BIOICE munnopsids used in this study are available via DZMB HH numbers and stored in the material archive hosted at the DZMB. All remaining BIOICE isopods determined during this study are hosted at the University of Iceland under the responsibility of Jörundur Svavarsson. We do not describe new species and do not use any genetic data.

References

  1. Ahyong ST, Lowry JK, Alonso M, Bamber RN, Boxshall GA, Castro P, Gerken S, Karaman GS, Goy JW, Jones DS, Meland K, Rogers DC, Svavarsson J (2011) Subphylum Crustacea Brünnich, 1772. In Zhang, Z.-Q. (Ed.) Animal biodiversity, an outline of higher-level classification and survey of taxonomic richness. Zootaxa 3148:165–191Google Scholar
  2. Beaulieu SE (2001a) Colonization of habitat islands in the deep sea: recruitment to glass sponge stalks. Deep-Sea Res I 48(4):1121–1137CrossRefGoogle Scholar
  3. Beaulieu SE (2001b) Life on glass houses: sponge stalk communities in the deep sea. Mar Biol 138(4):803–817CrossRefGoogle Scholar
  4. Beddard FE (1886) Preliminary notice of the Isopoda collected during the voyage of HMS ‘Challenger.’ Part III. Proc Zool Soc London, 1886 26:97–122Google Scholar
  5. Bett BJ (2001) UK Atlantic Margin Environmental Survey: introduction and overview of bathyal benthic ecology. Cont Shelf Res 21(8):917–956CrossRefGoogle Scholar
  6. Birstein JA (1961) Microthambema tenuis n. gen. n. sp. (Isopoda Asellota) and relations of some asellote isopods. Crustaceana 2(2):132–141CrossRefGoogle Scholar
  7. Bober S, Schwentner M, Riehl T, Schwentner M (2018) Does the Mid-Atlantic Ridge affect the distribution of benthic crustaceans across the Atlantic Ocean? Deep-Sea Res IIGoogle Scholar
  8. Brandt A (1992) The genus Coperonus Wilson, 1989 (Crustacea: Isopoda: Asellota: Munnopsidae). Zool J Linnean Soc 106(1):63–95CrossRefGoogle Scholar
  9. Brandt A (1993) Composition, abundance, and diversity of peracarid crustaceans on a transect of the Kolbeinsey Ridge, north of Iceland. Polar Biol 13(8):565–576CrossRefGoogle Scholar
  10. Brandt A (1997) Biodiversity of peracarid crustaceans (Malacostraca) from the shelf down to the deep Arctic Ocean. Biodivers Conserv 6(11):1533–1556CrossRefGoogle Scholar
  11. Brandt A, Elsner N, Brenke N, Golovan O, Malyutina MV, Riehl T, Schwabe E, Würzberg L (2013) Epifauna of the sea of Japan collected via a new epibenthic sledge equipped with camera and environmental sensor systems. Deep-Sea Res II 86:43–55CrossRefGoogle Scholar
  12. Brattegard T, Fosså JH (1991) Replicability of an epibenthic sampler. J Mar Biol Assoc UK 71(1):153–166CrossRefGoogle Scholar
  13. Brenke N (2005) An epibenthic sledge for operations on marine soft bottom and bedrock. Mar Technol Soc J 39(2):10–21CrossRefGoogle Scholar
  14. Brey T, Klages M, Dahm C, Gorny M, Gutt J, Hain S, Stiller M, Arntz WE, Wägele JW, Zimmermann A (1994) Antarctic benthic diversity. Nature 368:297CrossRefGoogle Scholar
  15. Brix S, Svavarsson J (2010) Distribution and diversity of desmosomatid and nannoniscid isopods (Crustacea) on the Greenland-Iceland-Faeroe Ridge. Polar Biol 33(4):51–530CrossRefGoogle Scholar
  16. Brix S, Riehl T, Leese F (2011) First genetic data for species of the genus Haploniscus Richardson, 1908 (Isopoda: Asellota: Haploniscidae) from neighbouring deep-sea basins in the South Atlantic. Zootaxa 2838:79–84Google Scholar
  17. Brix S, Bauernfeind W, Brenke N, Blazewicz M, Borges V, Buldt K, Cannon J, Díaz Agras G, Fiege D, Fiorentino D, Haraldsdóttir S, Hoffmann S, Holst S, Hüttmann F, Jeskulke K, Jennings R, Kocot K, Khodami S, Lucas Rodriguez Y, Martinez Arbizu P, Meißner K, Mikkelsen N, Miller M, Murray A, Neumann H, Ostmann A, Riehl T, Schnurr S, Savavarsson J, Yasuhara M (2012) Overflow, Circulation and Biodiversity - Cruise No. M85/3 - August 27 - September 28, 2011 - Reykjavik (Iceland) - Cuxhaven (Germany) in METEOR-Berichte; M85/3, 41 pages. ISSN: 2195-8475, DOI: https://doi.org/10.2312/cr_m85_3
  18. Brix S, Martinez Arbizu P, Svavarsson J, Kenning M, Jennings R, Holst S, Cannon J, Eilertsen M, Schnurr S, Jeskulke K, Hoffmann S (2013) IceAGE—Icelandic marine Animals: Genetics and Ecology, Cruise No. POS456, IceAGE2, 20.07.2013 – 04.08.2013, Kiel (Germany) - Reykjavik (Iceland). 17 pp. DOI  https://doi.org/10.3289/CR_POS456
  19. Brix S, Meißner K, Stransky B, Halanych KM, Jennings RM, Kocot K, Svavarsson J (2014) The IceAGE project—a follow up of BIOICE. Pol. Polar Res 35(2):141–150Google Scholar
  20. Brix S, Lörz AN, Jażdżewska A, Hughes L, Tandberg AHS, Pabis K, Stransky B, Krapp-Schickel T, Sorbe JC, Hendrycks E, Vader W, Frutos I, Horton T, Jażdżewski K, Peart R, Beermann J, Coleman CO, Buhl-Mortensen L, Corbari L, Havermans C, Tato R, Jimenez Campean A (2018) Amphipod family distributions around Iceland. Zookeys 731:1–54CrossRefGoogle Scholar
  21. Brökeland W (2010) Redescription of Haploniscus rostratus (Menzies, 1962) (Crustacea: Peracarida: Isopoda) with observations on the postmarsupial development, size ranges and distribution. Zootaxa 2521:1–25Google Scholar
  22. Brökeland W, Svavarsson J (2017) Distribution of haploniscids (Isopoda, Asellota, Haploniscidae) in Icelandic waters, with description of Haploniscus astraphes n. sp. from the Iceland basin and the Southeast Atlantic Ocean. Zootaxa 4231(3):301–326CrossRefGoogle Scholar
  23. Brökeland W, Guðmundsson G, Svavarsson J (2010) Diet of four species of deep-sea isopods (Crustacea: Malacostraca: Peracarida) in the South Atlantic and the Southern Ocean. Mar Biol 157(1):177–178CrossRefGoogle Scholar
  24. Chardy P (1975) Isopodes nouveaux des campagnes Biaçores et Biogas IV en Atlantique Nord. Bull Mus Natl Hist 3(303):689–708Google Scholar
  25. Chaudary C, Saeedi H, Costello MJ (2017) Marine species richness is bimodal with latitude: a reply to Fernandez and Marques. Trends Ecol Evol 32(4):234–237CrossRefGoogle Scholar
  26. Clarke A (2008) Antarctic marine benthic diversity: patterns and processes. J Exp Mar Biol Ecol 366(1):48–55CrossRefGoogle Scholar
  27. Clarke KR, Gorley RN (2015) Primer v7: User Manual/Tutorial. Primer-E Ltd, Plymouth, 296 ppGoogle Scholar
  28. Clarke KR, Warwick RM (1994) An approach to statistical analysis and interpretation. Change in marine. Communities 2Google Scholar
  29. Costello MJ, Tsai P, Wong PS, Cheung AKL, Basher Z, Chaudary C (2017) Marine biogeographic realms and species endemicity. Nat Commun 8(1):1057PubMedPubMedCentralCrossRefGoogle Scholar
  30. Cunha MR, Wilson GDF (2003) Haplomunnidae (Crustacea: Isopoda) reviewed, with a description of an intact specimen of Thylakogaster Wilson & Hessler, 1974. Zootaxa 326(1):1–16CrossRefGoogle Scholar
  31. Dana JD (1849) Conspectus Crustaceorum quae in Orbis Terrarum Circumnavigatione, Carolo Wilkes e Classe Reipublicae Foederatae Duce, lexit et descripsit. Am J Sci Arts Ser 2(8):424–428Google Scholar
  32. Dana JD (1852) On the classification of the Crustacea Choristopoda or Tetradecapoda. Am J Sci Arts 2:297–316Google Scholar
  33. Dauvin JC, Alizier S, Weppe A, Guðmundsson G (2012) Diversity and zoogeography of Icelandic deep-sea Ampeliscidae (Crustacea: Amphipoda). Deep-Sea Res I 68:12–23CrossRefGoogle Scholar
  34. Doti BL, Wilson GDF (2010) The genera Carpias Richardson, Ianiropsis Sars and Janaira Moreira & Pires (Isopoda: Asellota: Janiridae) from Australia, with description of three new species. Zootaxa 2625:1–39Google Scholar
  35. Etter RJ, Boyle EE, Glazier A, Jennings RM, Dutra E, Chase MR (2011) Phylogeography of a pan-Atlantic abyssal protobranch bivalve: implications for evolution in the Deep Atlantic. Mol Ecol 20(4):829–843PubMedCrossRefGoogle Scholar
  36. Fabricius JC (1798) Entomologia Systematica emendata et aucta, secundum classes, ordines, genera, species adjectis synonimis locis observationibus descriptionibus. Hafniae, Tom. II. Suppl Entomologiae Systematicae:1–572, CopenhagenGoogle Scholar
  37. Gamô S (1983) Some species of abyssal asellote isopods (Crustacea) from east of the Japan Trench, with the descriptions of Janirella (Janirella) aculeata sp. nov., J. (Parajanirella) sedecimtuberculata sp. nov., and Aryballurops japonica gen. et sp. nov. Sci Rep Yokohama Nat Univ Sec 2(30):1–18Google Scholar
  38. Gebruk AV, Budaeva NE, King NJ (2010) Bathyal benthic fauna of the Mid-Atlantic Ridge between the Azores and the Reykjanes Ridge. J Mar Biol Assoc UK 90(1):1–14CrossRefGoogle Scholar
  39. George RY (2003) Bermudasignum frankenbergi n. gen. n. sp. (Crustacea: Isopoda) off Bermuda and evolution within the deep-sea family Mesosignidae. Bull Mar Sci 73(3):699–712Google Scholar
  40. Golovan OA (2015) Desmosomatidae (Isopoda: Asellota) from the abyssal plain to the east of the Kuril–Kamchatka Trench: new data on diversity with the description of two new species. Deep Sea Res II 111:256–278CrossRefGoogle Scholar
  41. Guðmundsson G, von Schmalensee M, Svavarsson J (2000) Are foraminifers (Protozoa) important food for small isopods (Crustacea) in the deep sea? Deep Sea Res I 47:2093–2109CrossRefGoogle Scholar
  42. Gurjanova E (1946) New species of Isopoda and Amphipoda from the Arctic Ocean. Compendium of results, Drifting Expedition, Icebreaker “Cedov”, 1937-1940, Moscow 3: 272–297Google Scholar
  43. Hansen HJ (1895) Isopoden, Cumaceen und Stomatopoden der Plankton Expedition. Kiel & Leipzig: Lipsius & Tischer. (Ergebnisse der Plankton-Expedition der Humbolt-Stiftung im Atlantischen Ozean, 1889Google Scholar
  44. Hansen HJ (1916) Crustacea Malacostraca. III Danish Ingolf Exped 3(5):1–262Google Scholar
  45. Hansen B, Østerhus S (2000) North Atlantic—Nordic seas exchanges. Prog Oceanogr 45(2):109–208CrossRefGoogle Scholar
  46. Hardy SM, Carr CM, Hardman M, Steinke D, Corstorphine E, Mah C (2011) Biodiversity and phylogeography of Arctic marine fauna: insights from molecular tools. Mar Biodivers 41(1):195–210CrossRefGoogle Scholar
  47. Harrison K (1987) Deep-sea asellote isopods of the north-east Atlantic: the family Thambematidae. Zool Scr 16(1):51–72CrossRefGoogle Scholar
  48. Hessler RR (1970) The Desmosomatidae (Isopoda, Asellota) of the Gay Head-Bermuda transect. Bull Scripps Inst Oceanogr 15:1–185Google Scholar
  49. Hessler RR, Sanders HL (1967) Faunal diversity in the deep-sea. Deep-Sea Res 14(1):65–78Google Scholar
  50. Hessler RR, Strömberg JO (1989) Behavior of janiroidean isopods (Asellota), with special reference to deep-sea genera. Sarsia 74(3):145–159CrossRefGoogle Scholar
  51. Høisæter T (2010) The shell-bearing, benthic gastropods on the southern part of the continental slope off Norway. J Molluscan Stud 76(3):234–244CrossRefGoogle Scholar
  52. Hult J (1941) On the soft-bottom isopods of the Skagerrak. Zool Bidr Upps 21:1–34Google Scholar
  53. Jażdżewska AM, Corbari L, Driskell A, Frutos I, Havermans C, Hendrycks E, Hughes L, Lörz AN, Stransky B, Tandberg AHS, Vader BS (2018) A genetic fingerprint of Amphipoda from Icelandic waters—the baseline for further biodiversity and biogeography studies. Zookeys 731:55–74CrossRefGoogle Scholar
  54. Jochumsen K, Köllner M, Quadfasel D, Dye S, Rudels B, Valdimarsson H (2015) On the origin and propagation of Denmark Strait overflow water anomalies in the Irminger Basin. J Geophys Res-Oceans 120(3):1841–1855CrossRefGoogle Scholar
  55. Jochumsen K, Schurr S, Quadfasel D (2016) Bottom temperature and salinity distribution and its variability around Iceland. Deep Sea Res I 111:79–90CrossRefGoogle Scholar
  56. Just J (1980) Polar sea abyssal and deep bathyal Isopoda (Crustacea). Steenstrupia 6:197–230Google Scholar
  57. Just J (2009) Triaina, a new genus in the Janirellidae Menzies, 1956 (Crustacea: Isopoda: Asellota), with two new species from southeastern Australia, and a new diagnosis for the family. Zootaxa 1980:1–15Google Scholar
  58. Just J, Wilson GDF (2004) Revision of the Paramunna complex (Isopoda: Asellota: Paramunnidae). Invertebr Syst 18(4):377–466CrossRefGoogle Scholar
  59. Just J, Wilson GDF (2007) Revision of Austrosignum Hodgson and Munnogonium George & Strömberg (Paramunnidae) with descriptions of eight new genera and two new species, (Crustacea: Isopoda: Asellota). Zootaxa 1515:1–29Google Scholar
  60. Kensley B (2004) Redescription and distribution of two species of Syscenus (Crustacea, Isopoda, Aegidae) in the North Atlantic. Sarsia 89(3):160–174CrossRefGoogle Scholar
  61. Kussakin OG (1982) Morskye i solonovatovodnie ravnonogie rakoobraznye (Isopoda) holodnix I umerennih vod severnoge polusharia (marine and brackish water Isopoda of the cold and temperate waters of the Northern Hemisphere) II. Suborders Anthuridea, Microcerberidea, Valvifera, Tyloidea (in Russian), 461 pp.Google Scholar
  62. Kussakin OG (1999) Marine and brackish water Isopoda of the cold and temperate waters of the Northern Hemisphere. III Suborder Asellota Part 2Google Scholar
  63. Larsen B (1983) Geology of the Greenland-Iceland Ridge in the Denmark Strait. In Structure and development of the Greenland-Scotland Ridge (pp. 425–444). Volume 8. Eds. Martin HP Bott, Svend Savox, Manik Talwani and Jörn Thiede. Springer Science+Business Media New York, Plenum Press, New YorkGoogle Scholar
  64. Latreille PA (1817) Les Crustacés, les Arachnides, et les Insectes. In: Cuvier (ed) Le Regne Animal, distribue d’apres son organisation, pour servrir de base a l’histoire naturelle des animaux et d’introduction a l’anatomie comparee. Volume 3 ParisGoogle Scholar
  65. Latreille PA, Meunier R, Tardieu JB, Hubert (1802) Histoire naturelle générale et particulière des crustacés et des insectes: ouvrage faisant suite aux Oeuvres de Leclerc de Buffon, et partie du Cours complet d’histoire naturelle rédigé par C.S. Sonnini Paris: F Dufart 480 ppGoogle Scholar
  66. Leach WE (1814) Crustaceology. In: Brewster’s Edinburg Encyclopaedia 7:383–437Google Scholar
  67. Leach WE (1815) A tabular view of the external characters of four classes of animals, which Linné arranged under Insecta; with the distribution of the genera composing three of these classes into orders, and descriptions of several new genera and species. Trans Linn Soc Lond 11(2):306–400CrossRefGoogle Scholar
  68. Legendre P, Legendre LF (2012) Numerical ecology (Vol. 24) Elsevier, Amsterdam. 990 pp.Google Scholar
  69. Lilljeborg W (1864) Bidrag til kännedommen om de inom Sverige och Norrige förekommande Crustaceer af Isopodernas underordning och Tanaidernas familj. Inbjudningsskrift till Åhörande af de Offentliga Föreläsninger. C. A. Leffler, Kongl. Acad. Boktryckare, Upsala, 31 pp.Google Scholar
  70. Lincoln RJ (1985) Deep-sea asellote isopods of the north-east Atlantic: the family Haploniscidae. J Nat Hist 19(4):655–695CrossRefGoogle Scholar
  71. Lincoln RJ, Boxshall GA (1983) Deep-sea asellote isopods of the north-east Atlantic; the family Dendrotionidae and some new ectoparasitic copepods. J Linn Soc London, Zool 79:297–318CrossRefGoogle Scholar
  72. Malyutina MV, Brandt A (2007) Diversity and zoogeography of Antarctic deep-sea Munnopsidae (Crustacea, Isopoda, Asellota). Deep-Sea Res II 54(16):1790–1805CrossRefGoogle Scholar
  73. Malyutina MV, Brandt A (2015) Composition and distribution of Munnopsidae (Crustacea, Isopoda, Asellota), collected during the KuramBio expedition 2012 from the Kuril-Kamchatka Trench area. Deep-Sea Res II 111:245–255CrossRefGoogle Scholar
  74. Malyutina MV, Kussakin OG (1996) Addition to the Polar Sea bathyal and abyssal Isopoda (Crustacea). Part 1. Anthuridea, Valvifera, Asellota (Ischnomesidae, Macrostylidae, Nannoniscidae). Zoosyst Ross 4(1):49–62Google Scholar
  75. Malyutina MV, Golovan OA, Elsner NO (2013) Description of Baeonectes brandtae sp. nov. and redescription of Eurycope spinifrons Gurjanova, 1933 (Crustacea, Isopoda, Munnopsidae) from the deep-sea basin of the Sea of Japan. Deep Sea Res II (86):79–102Google Scholar
  76. Meißner K, Brenke N, Svavarsson J (2014) Benthic habitats around Iceland investigated during the IceAGE expeditions. Pol Polar Res 35(2):179–204Google Scholar
  77. Menzies RJ (1956) New abyssal tropical Atlantic isopods with observations on their biology. Am Mus Novit 1798:1–16Google Scholar
  78. Menzies RJ (1962) The isopods of abyssal depths in the Atlantic Ocean. Vema Res Ser 1:79–206Google Scholar
  79. Merrin KL, Poore G (2003) Four new species of Ischnomesidae (Crustacea: Isopoda: Asellota) from off south-eastern Australia. Mem Mus Vic 60(2):285–307CrossRefGoogle Scholar
  80. Naylor E (1972) British marine isopods. Academic Press for the Linnean Society of London. 86 ppGoogle Scholar
  81. Negoescu I, Svavarsson J (1997) Anthurideans (Crustacea, Isopoda) from the North Atlantic and the Arctic Ocean. Sarsia 82(3):159–202CrossRefGoogle Scholar
  82. Nørrevang A, Brattegard T, Josefson AB, Sneli JA, Tendal OS (1994) List of BIOFAR stations. Sarsia 79(3):165–180CrossRefGoogle Scholar
  83. Ohlin A (1901) Arctic Crustacea I. Leptostraca, Isopoda, Cumacea. Bihang till Kongliga Svenska Vetenskaps-Akademiens Handlingar 26 (part 4, no. 12): 1–54Google Scholar
  84. Osborn KJ (2007) Phylogenetics and ecology of pelagic munnopsid isopods (Crustacea, Asellota). University of California, BerkeleyGoogle Scholar
  85. Ostmann A, Schnurr S, Martínez Arbizu PM (2014) Marine environment around Iceland: hydrography, sediments and first predictive models of Icelandic deep-sea sediment characteristics. Pol Polar Res 35(2):151–176CrossRefGoogle Scholar
  86. Parapar J, Moreira J, Helgason GV (2011) Distribution and diversity of the Opheliidae (Annelida, Polychaeta) on the continental shelf and slope of Iceland, with a review of the genus Ophelina in northeast Atlantic waters and description of two new species. Org Divers Evol 11(2):83–105CrossRefGoogle Scholar
  87. Poore GCB (2001) Isopoda Valvifera: diagnoses and relationships of the families. J Crust Biol 21(1):205–230CrossRefGoogle Scholar
  88. Poore GC, Bruce NL (2012) Global diversity of marine isopods (except Asellota and crustacean symbionts). PLoS One 7(8):e43529PubMedPubMedCentralCrossRefGoogle Scholar
  89. Rafinesque CS (1815) Analyse de la Nature ou Tableau de l’univers et des corps organises. Palerme:1–224Google Scholar
  90. Rex MA, Stuart CT, Coyne G (2000) Latitudinal gradients of species richness in the deep-sea benthos of the North-Atlantic. P Natl Acad Sci USA 97(8):4082–4085CrossRefGoogle Scholar
  91. Riehl T (2009) Macrostylidae Hansen, 1916 (Crustacea, Malacostraca). State of the art, new results and perspectives. Diplomathesis, University of HamburgGoogle Scholar
  92. Riehl T (2014) A phylogenetic approach to the classification of macrostylid isopods and faunal linkages between the deep sea and shallow-water environments. Diss. Hamburg, Germany: University of Hamburg. Available from: http://ediss.sub.uni-hamburg.de/volltexte/2014/6839/. [Accessed 2017-09-19]
  93. Riehl T, Brandt A (2010) Descriptions of two new species in the genus Macrostylis Sars, 1864 (Isopoda, Asellota, Macrostylidae) from the Weddell Sea (Southern Ocean), with a synonymisation of the genus Desmostylis Brandt, 1992 with Macrostylis. ZooKeys 57:9–49CrossRefGoogle Scholar
  94. Riehl T, Kaiser S (2012) Conquered from the deep sea? A new deep-sea isopod species from the Antarctic shelf shows pattern of recent colonization. PLoS One 7(11):e49354PubMedPubMedCentralCrossRefGoogle Scholar
  95. Riehl T, Brenke N, Brix S, Driskella A, Kaiser S, Brandt A (2014a) Field and laboratory methods for DNA studies on deep-sea isopod crustaceans. Pol Polar Res 35(2):203–224CrossRefGoogle Scholar
  96. Riehl T, Wilson GDF, Malyutina MV (2014b) Urstylidae—a new family of deep-sea isopods and its phylogenetic implications. Zool J Linnean Soc 170:245–296CrossRefGoogle Scholar
  97. Riehl T, Bober S, Voltski I, Malyutina MV, Brandt A (2016) Caught in the act: an abyssal isopod collected while feeding on Komokiaceae. Mar Biodivers:1–2Google Scholar
  98. Rothlisberg PC, Pearcy WG (1977) An epibenthic sampler used to study the ontogeny of vertical migration of Pandalus jordani (Decapoda, Caridea). Fish Bull 74:994–997Google Scholar
  99. Sars GO (1864) Om en anomal Gruppe af Isopoder. Forhandlinger Vidensk-Selsk, Anar 1863 in Christiana:205–221Google Scholar
  100. Sars GO (1866) II. Beretning om en i Sommeren 1865 foretagen zoologisk Reise ved Kysterne af Christianias og Christiansands Stifter. Nyt Magazin for Naturvidenskaberne 15:84–128Google Scholar
  101. Sars GO (1870) Nye Dybvandscrustaceer fra Lofoten. Forhandlinger i Videnskaps-selskabet I Christiania 1869:205–221Google Scholar
  102. Sars GO (1872) Undersøgelser over Hardangerfjordens fauna Forh. Videnskabsselsk Kristiania 1871:246–286Google Scholar
  103. Sars GO (1883) Oversigt af Norges Crustaceer med foreløbige Bemærkninger over de nye eller mindre bekjendte Arter. I. (Podophtalmata - Cumacea - Isopoda - Amphipoda). Vidensk-Selsk Christiana. 18 [for 1882]:1–124, pls. 1–6Google Scholar
  104. Sars GO (1897–1899) An account of the Crustacea of Norway with short descriptions and figures of all the species, Vol2, 1–104Google Scholar
  105. Schnurr S, Brandt A, Brix S, Fiorentino D, Malyutina M, Svavarsson J (2014) Composition and distribution of selected munnopsid genera (Crustacea, Isopoda, Asellota) in Icelandic waters. Deep-Sea Res II 84:142–155CrossRefGoogle Scholar
  106. Schnurr S, Osborn KJ, Malyutina M, Jennings RM, Brix S, Svavarsson J, Martinez Arbizu PM (2018) Hidden diversity in two species complexes of munnopsid isopods (Crustacea) at the transition between the northernmost North Atlantic and the Nordic Seas. Mar Biodiv, this IssueGoogle Scholar
  107. Schultz GA (1969) The Marine Isopod Crustacean. How to know. WM G. Brown Company Publishers, Iowa, 359Google Scholar
  108. Siebenaller J, Hessler RR (1981) The genera of the Nannoniscidae (Isopoda, Asellota). Transactions of the San Diego Society of Nat Hist 19(16): 227–250Google Scholar
  109. Somero GN, Childress JJ (1990) Scaling of ATP-supplying enzymes, myofibrillar proteins and buffering capacity in fish muscle: relationship to locomotory habit. J Exp Biol 149(1):319–333Google Scholar
  110. Stebbing TRR (1888) Report on the amphipoda collected by H.M.S. challenger during the years 1873-1876. Zoology 29:1–1737Google Scholar
  111. Stebbing TRR (1912) On the Crustacea Isopoda of the ‘Porcupine’ expedition. [Abstract] Proc Zool Soc London Pt4 (112):42Google Scholar
  112. Stefánsson U (1962) North Icelandic waters. Rit Fiskid 3:1–269Google Scholar
  113. Stimpson W (1853) Synopsis of the marine Invertebrata of Grand Manan: or the region about the mouth of the Bay of Fundy, New Brunswick. Smithsonian Contributions to Knowledge. 6: 1–66, pls 1–3., http://www.biodiversitylibrary.org/item/73632
  114. Stransky B (2007) Abundance, diversity and species composition of the Peracarida (Crustacea: Malacostraca) from the South Greenland shelf. Dissertation, University of HamburgGoogle Scholar
  115. Stransky B, Svavarsson J (2006) Astacilla boreaphilis sp. nov. (Crustacea: Isopoda: Valvifera) from shallow and deep North Atlantic waters. Zootaxa 1259:1–23Google Scholar
  116. Stransky B, Svavarsson J (2010) Diversity and species composition of peracarids (Crustacea: Malacostraca) on the South Greenland shelf: spatial and temporal variation. Polar Biol 33(2):125–139CrossRefGoogle Scholar
  117. Svavarsson J (1982) Nannoniscus profundus sp. n. and Austroniscus norbi sp. n. (Isopoda, Asellota, Nannoniscidae) from the deep Norwegian Sea. Sarsia 67:179–186CrossRefGoogle Scholar
  118. Svavarsson J (1984) Ischnomesidae (Isopoda: Asellota) from bathyal and abyssal depths in the Norwegian and North Polar Seas. Sarsia 69(1):25–36CrossRefGoogle Scholar
  119. Svavarsson J (1987a) Reevaluation of Katianira in Arctic waters and erection of a new family, Katianiridae (Isopoda: Asellota). J Crust Biol 7(4):740–720CrossRefGoogle Scholar
  120. Svavarsson J (1987b) Eurycopidae (Isopoda, Asellota) from bathyal and abyssal depths in the Norwegian, Greenland, and North Polar Seas. Sarsia 72:183–196CrossRefGoogle Scholar
  121. Svavarsson J (1988) Bathyal and abyssal Asellota (Crustacea, Isopoda) from the Norwegian, Greenland, and North Polar Seas. Sarsia 73:83–106CrossRefGoogle Scholar
  122. Svavarsson J (1997) Diversity of isopods (Crustacea): new data from the Arctic and Atlantic Oceans. Biodivers Conserv 6:1571–1579CrossRefGoogle Scholar
  123. Svavarsson J, Strömberg JO, Brattegard T (1993) The deep-sea asellote (Isopoda, Crustacea) fauna of the Northern Seas: species composition, distributional patterns and origin. J Biogeogr 20(5):537–555CrossRefGoogle Scholar
  124. Ter Braak CJ, Smilauer P (2002) CANOCO reference manual and CanoDraw for Windows user’s guide: software for canonical community ordination (version 4.5). Microcomputer Power. Ithaca, New York. www.canoco.com
  125. Thistle D, Wilson GDF (1987) A hydrodynamically modified, abyssal isopod fauna. Deep-Sea Res II 34(1):73–87Google Scholar
  126. Thistle D, Wilson GDF (1996) Is the HEBBLE isopod fauna hydrodynamically modified? A second test. Deep-Sea Res I 43(4):545–554CrossRefGoogle Scholar
  127. Timm M, Kaiser S, Brandt A (2013) A new species of Acanthaspidia Stebbing, 1898 (Isopoda, Asellota, Acanthaspidiidae) from the bathyal Weddell Sea (Southern Ocean). Zootaxa 3692(1):238–258CrossRefGoogle Scholar
  128. Vanhöffen E (1914) Die Isopoden der deutschen Südpolar-Expedition 1901–1903. Deutsche Südpolar-Exp, Zool 15:447–598Google Scholar
  129. Wägele JW (1981) Zur Phylogenie der Anthuridea (Crustacea, Isopoda). Zoologica 132:1–127Google Scholar
  130. Wägele JW (1987) The feeding mechanism of Antarcturus and a redescription of A. spinacoronatus Schultz, 1978 (Crustacea: Isopoda: Valvifera). Phil Trans R Soc Lond B 316:429–458CrossRefGoogle Scholar
  131. Wägele JW (1989) Evolution und phylogenetisches System der Isopoda. Zoologica 140:1–262Google Scholar
  132. Walker AO (1903) Report on the Isopoda and Amphipoda collected by Mr. George Murray, F.R.S., during the cruise of the “Oceana” in November 1898. Annals and Magazine of Natural History. (Ser 7) 12: 223–233Google Scholar
  133. Wandel CF (1899) Report of the voyage. Danish Ingolf Exped 1(1):1–21Google Scholar
  134. Wares JP, Cunningham CW (2001) Phylogeography and historical ecology of the North Atlantic intertidal. Evolution 55(12):2455–2469PubMedCrossRefGoogle Scholar
  135. Weisshappel JBF (2000) Distribution and diversity of the hyperbenthic amphipod family Eusiridae in the different seas around the Greenland-Iceland-Faeroe-Ridge. Sarsia 85:227–236CrossRefGoogle Scholar
  136. Weisshappel JBF (2001) Distribution and diversity of the hyperbenthic amphipod family Calliopiidae in the different seas around the Greenland-Iceland-Faeroe-Ridge. Sarsia 86:143–151CrossRefGoogle Scholar
  137. White A (1850). Descriptions of two species of Crustacea in the British Museum. Proceedings of the Zoological Society of London, 18, pp. 95–97;pl. 16Google Scholar
  138. Wilson GDF (1976) The systematics and evolution of Haplomunna and its relatives (Isopoda, Haplomunnidae, new family). J Nat Hist 10(5):569–580CrossRefGoogle Scholar
  139. Wilson GDF (1980) New insights into the colonization of the deep sea: systematics and zoogeography of the Munnidae and the Pleurogoniidae comb. nov. (Isopoda; Janiroidea). J Nat Hist 14(2):215–236CrossRefGoogle Scholar
  140. Wilson GDF, Ahyong ST (2015) Lifestyles of the species-rich and fabulous: the deep-sea crustaceans. Lifestyles and feeding. Biology 279Google Scholar
  141. Wilson GDF, Hessler RR (1974) Some unusual Paraselloidea (Isopoda, Asellota) from the deep benthos of the Atlantic. Crustaceana 27(1):47–67CrossRefGoogle Scholar
  142. Wolff T (1962) The systematics and biology of bathyal and abyssal Isopoda Asellota. Galathea Rep 6:1–320Google Scholar
  143. Würzberg L, Peters J, Brandt A (2011) Fatty acid patterns of Southern Ocean shelf and deep sea peracarid crustaceans and a possible food source, foraminiferans. Deep-Sea Res II 58(19):2027–2035CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Senckenberg am Meer, German Centre for Marine Biodiversity Research (DZMB)HamburgGermany
  2. 2.Centre of Natural History (CeNak), Zoological MuseumUniversity of HamburgHamburgGermany
  3. 3.A.V. Zhirmunsky Institute of Marine Biology, National Scientific Center of Marine Biology, Far Eastern BranchRussian Academy of SciencesVladivostokRussia
  4. 4.Laboratory of Polar Biology and Oceanobiology, Department of Invertebrate Zoology and Hydrobiology, Faculty of Biology and Environmental ProtectionUniversity of LodzLodzPoland
  5. 5.Faculty of Life and Environmental SciencesUniversity of Iceland, Askja – Natural Science BuildingReykjavíkIceland
  6. 6.Department Marine Zoology, Section CrustaceaSenckenberg Research Institute and Natural History MuseumFrankfurtGermany

Personalised recommendations