Skip to main content

Advertisement

Log in

200 years of marine research at Senckenberg: selected highlights

  • Review
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

A history of the Marine Zoology Department at the Senckenberg Society for the Study of Nature (Senckenbergische Naturforschende Gesellschaft) has not yet been published. Still, there is no lack of documentation of research activities at the Senckenberg Research Institute and Natural History Museum. Marine zoology studies began with Eduard Rüppell (1794–1884) after his admission to the Senckenberg Society in 1818, one year after its foundation, and his collections of fishes, molluscans and crustaceans from the Mediterranean made in 1820. During the nineteenth century, further progress in marine zoology studies was slow and serious interest in the study of marine organisms expanded significantly only during the twentieth century after the foundation of the marine station at Wilhelmshaven in 1928. The amount of marine biology and geology literature originating from researchers associated with the Senckenberg has become overwhelming and the dwarfs once standing on the shoulder of giants have become giants themselves. In this article, we present the Marine Zoology Department, its sections and assess the most important researchers associated with the Senckenberg Research Institute including the founders of the sections and their place in two centuries of history since the foundation of the Senckenberg Society in 1817.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Adl SM, Simpson AGB, Lane CE, Lukes J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Gall LL, Lynn DH, McMantus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493

    Article  PubMed  PubMed Central  Google Scholar 

  • Barnich R, Fiege D (2000) Borstenwürmer. Schillernde Bewohner der Meere Kl Senckenberg-Reihe Nr 37:64 p

  • Barnich R, Fiege D (2003) The Aphroditoidea (Annelida: Polychaeta) of the Mediterranean Sea. Abh Senckenb Naturforsch Ges 559:1–167

    Google Scholar 

  • Barnich R, Fiege D (2009) Revision of the genus Harmothoe Kinberg, 1856 (Polychaeta: Polynoidae) in the Northeast Atlantic. Zootaxa 2104:1–76

    Google Scholar 

  • Bartsch I (2003) Lohmannellinae (Halacaridae: Acari) from the great meteor seamount (northeastern Atlantic) description of new species and reflections on the origin of the seamount fauna. Mitt Hamb Zool Mus Inst 100:101–117

    Google Scholar 

  • Bartsch I (2004) Halacaridae (Acari) from the great meteor seamount (northeastern Atlantic). Description of Simognathus species. Mitt Hamb Zool Mus Inst 101:185–196

    Google Scholar 

  • Benedix G, Jacob DE, Lotz BH, Martha SO, Matsuyama K, Morales LFG, Neu C, Scholz J (2016) Bryozoen als Architekten. Wissenschaftler entschlüsseln die Choreografie aufeinanderfolgender Generationen mit moderner Technik. Senckenberg Nat Forsch Mus 146:14–19

    Google Scholar 

  • Berger F (2007) Frankfurt und der Nordpol. Schriften des Historischen Museums Frankfurt am Main 26:1–216

    Google Scholar 

  • Bitschofsky F (2013) Distribution over space and time in Epizoobiontic North Sea bryozoans. Lecture Notes in Earth System Sciences 143:1–12

    Article  Google Scholar 

  • Bitschofsky F, Forster S, Scholz J (2011) Regional and temporal changes in epizoobiontic bryozoan-communities of Flustra foliacea (Linnaeus, 1758) and implications for North Sea ecology. Estuar Coast Shelf Sci 91:423–433

    Article  Google Scholar 

  • Boersma M, Wiltshire KH, Kong SM, Greve W, Renz J (2015) Long-term change in the copepod community in the southern German bight. J Sea Res 101:41–50

    Article  Google Scholar 

  • Boettger CR (1915) Die von Dr. Merton auf den Aru- und Kei-Inseln gesammelten Wassermollusken. Abh Senckenb Naturforsch Ges 35:125–145

    Google Scholar 

  • Boettger CR (1916) Die Molluskenausbeute der Hanseatischen Südsee-Expedition 1909. Abh Senckenb Naturforsch Ges 36:287–308

    Google Scholar 

  • Boettger O (1887) Die ostasiatischen Vertreter der Gattung Rissoina I. Jahrbücher der deutschen malakozologischen Gesellschaft 14:125–135

    Google Scholar 

  • Boettger O (1893) Die marinen Mollusken der Philippinen, nach den Sammlungen des Herrn José Florencio Quadras in Manila (I-III). Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 25: 97–115, 153–167, 185–193

  • Boettger O (1895) Die marinen Mollusken der Philippinen, nach den Sammlungen des Herrn José Florencio Quadras in Manila (IV). Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 27(1–20):41–63

    Google Scholar 

  • Boettger O (1896) Die marinen Mollusken der Philippinen, nach den Sammlungen des Herrn José Florencio Quadras in Manila (V). Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 28:41–56

    Google Scholar 

  • Böggemann M (2002) Revision of the Glyceridae GRUBE 1850 (Annelida: Polychaeta). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft Frankfurt am Main 555:1–249

    Google Scholar 

  • Bott R (1955) Die Süßwasserkrabben von Afrika (Crust., Decap.) und ihre Stammesgeschichte. Annales du Musée Royal du Congo Belge. C Zool Série III 1:209–352

    Google Scholar 

  • Brandt A, Frutos I, Bober S, Brix S, Brenke N, Guggolz T, Heitland N, Malyutina M, Minzlaff U, Riehl T, Schwabe E, Zinkann A-C, Linse K (2017) Composition of abyssal macrofauna along the Vema fracture zone and the hadal Puerto Rico trench, northern tropical Atlantic. Deep Sea Res II. https://doi.org/10.1016/j.dsr2.2017.07.014

  • Brandt A, Gooday AJ, Brix SB, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe J, Janussen D, Kaiser S, Linse K, Malyutina M, Brandao S, Pawlowski J, Raupach M (2007) The Southern Ocean deep sea: first insights into biodiversity and biogeography. Nature 447:307–311

    Article  PubMed  CAS  Google Scholar 

  • Brandt A, Gutt J, Hildebrandt M, Pawlowski J, Schwendner J, Soltwedel T, Thomsen L (2016) Cutting the umbilical - new technological perspectives in benthic deep-sea research. Journal of Marine Systems and Engineering 4:36. https://doi.org/10.3390/jmse4020036

    Article  Google Scholar 

  • Brenke N, Fanenbruck M, George KH (2017) A new parasitic deep-sea copepod from the Angola Basin (southeast Atlantic Ocean) Abyssotaurus vermiambatus gen. Et sp. nov. (Copepoda: Cyclopoida: Serpulidicolidae stock, 1979), with remarks on serpulidicolid systematics and a key to the species. Mar Biodivers. https://doi.org/10.1007/s12526-017-0724-1

  • Brix S, Leese F, Riehl T, Kihara TC (2014a) A new genus and new species of Desmosomatidae Sars, 1897 (isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. Mar Biodivers. https://doi.org/10.1007/s12526-014-0218-3

  • Brix S, Meißner K, Stransky B, Halanych KM, Jennings RM, Kocot KM, Svavarsson J (2014b) The IceAGE project – a followup of BIOICE. Polish Polar Res 35:141–150

    Article  Google Scholar 

  • Brix S, Leese F, Riehl T, Kihara TC (2015) A new genus and new species of Desmosomatidae Sars, 1897 (isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. Mar Biodivers 45:7–61

    Article  Google Scholar 

  • Brown A, Thatje S (2015) The effects of changing climate on faunal depth distributions determine winners and losers. Glob Chang Biol 21:173–180

    Article  PubMed  Google Scholar 

  • Bruce NL, Brix S, Balfour N, Kihara TC, Weigand AM, Mehterian S, Iliffe TM (2017) A new genus for Cirolana troglexuma Botosaneanu & Iliffe, 1997, an anchialine cave dwelling cirolanid isopod (Crustacea, isopoda, Cirolanidae) from the Bahamas. Subterranean Biol 21:57–92

    Article  Google Scholar 

  • Burrell AS, Disotell TR, Bergey CM (2015) The use of museum specimens with high-throughput DNA sequencers. J Human Evol 79:35–44

    Article  Google Scholar 

  • Candás M, Martínez Arbizu P, Urgorri V (2013) A new species of Leptopontiidae Lang, 1948 (Copepoda: Harpacticoida) from the Ría de Ferrol (north-west Iberian peninsula). J Nat Hist 47:409–425

    Article  Google Scholar 

  • Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker DTQ, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1029–1136. http://pure.iiasa.ac.at/10551/ Accessed 31 August 2017

  • Cosel RV (1982) Ergebnisse deutsch-portugiesischer Sammelreisen auf den Kapverdischen Inseln (República de Cabo Verde). Vorläufige Liste der marinen Mollusken – Courier Forschungs-Institut Senckenberg 52:15–25

    Google Scholar 

  • Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB (2015) Climate change tightens a metabolic constraint on marine habitats. Science 348(6239):1132–1135

    Article  PubMed  CAS  Google Scholar 

  • Dörjes J (1992a) Langfristige Veränderungen des Artenbestandes der Makroendofauna im Vorstrand der Düneninsel Norderney in der Zeit von 1976 bis 1988 (Nordsee). Senckenbergiana marit. 22:11–19

    Google Scholar 

  • Dörjes J (1992b) Langzeitentwicklung makrobenthischer Tierarten im Jadebusen (Nordsee) während der Jahre 1974–1987. Senckenberg Marit 22:37–57

    Google Scholar 

  • Dörjes J, Michaelis H, Rhode B (1986) Long-term studies of macro-zoobenthos in the intertidal and shallow subtidal habitats near the island of Norderney (east Frisian coast, Germany). Hydrobiol 142:217–232

    Article  Google Scholar 

  • Dunker WBRH (1859) Neue japanische Mollusken. Malakozoologische Blätter 6:221–240

  • Dunker WBRH (1861) Mollusca Japonica. Schweitzerbart, Stuttgart

  • Faulwetter S, Vasileiadou A, Kouratoras M, Dailianis T, Arvanitidis C (2013) Micro-computed tomography: introducing new dimensions to taxonomy. ZooKeys 263:1–45

    Article  Google Scholar 

  • Fedorov PV, Koromyslova AV, Martha SO (2017) The oldest bryozoans of Baltoscandia from the lowermost Floian (Ordovician) of north-western Russia: two new rare, small and simple species of Revalotrypidae. PalZ 91:353–373

    Article  Google Scholar 

  • Fernández R, Kvist S, Lenihan J, Giribet G, Ziegler A (2014) Sine Systemate chaos? A versatile tool for earthworm taxonomy: non-destructive imaging of freshly fixed and museum specimens using micro-computed tomography. PLoS One 9(5):e96617

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fiege D (2016) Sternaspidae Carus, 1863. In: Westheide W, Purschke G (eds) Handbook of Zoology Online. Annelida: Polychaetes. De Gruyter, Berlin, 17 pp. http://www.degruyter.com/view/Zoology/bp_029147-6_53

  • Fiege D, Ramey P, Ebbe B (2010) Diversity and distributional patterns of Polychaeta in the deep South Atlantic. Deep-Sea Res I 57:1329–1344

    Article  Google Scholar 

  • George KH (2013) Faunistic research on metazoan meiofauna from seamounts – a review. Meiofauna Marina 20:1–32

    Google Scholar 

  • George KH (2017) Phylogeny of the taxon Paralaophontodes Lang (Copepoda, Harpacticoida, Laophontodinae), including species descriptions, chorological remarks, and a key to species. Zoosystematics Evol 93:211–241

    Article  Google Scholar 

  • George KH, Brökeland W (2009) Deep-sea taxonomy – a contribution to our knowledge of biodiversity. Zootaxa 2096:1–488

    Google Scholar 

  • George KH, Gheerardyn H (2015) Remarks on the genus Laophontodes T. Scott, 1894 (Copepoda, Harpacticoida, Ancorabolidae, Laophontodinae), including the (re-) description of four species. Zool Anz 259:61–96

    Article  Google Scholar 

  • George KH, Veit-Köhler G, Martínez Arbizu P, Seifried S, Rose A, Willen E, Bröhldick K, Corgisinho PH, Drewes J, Menzel L, Moura G, Schminke KH (2014) Community structure and species diversity of Harpacticoida (Crustacea: Copepoda) at two sites in the deep sea of the Angola Basin (Southeast Atlantic). Org Divers Evol 14:57–73

    Article  Google Scholar 

  • George KH, Veit-Köhler G, Martínez Arbizu PM (2016) Das Deutsche Zentrum für marine Biodiversitätsforschung. Senckenberg Nat Forsch Mus 146:26–33

    Google Scholar 

  • Gerdes G, Kadagies N, Kaselowsky J, Lauer A, Scholz J (2005) Bryozoans and microbial communities of cool-temperate and subtropical latitudes – Paleoecological implications part II. Diversity of microbial fouling on laminar shallow marine bryozoans of Japan and New Zealand. Facies 50:363–389

    Article  Google Scholar 

  • Gheerardyn H, Veit-Köhler G (2009) Diversity and large-scale biogeography of Paramesochridae (Copepoda, Harpacticoida) in South Atlantic abyssal plains and the deep Southern Ocean. Deep Sea Res I 56:1804–1815

    Article  Google Scholar 

  • Göcke C, Janussen (2013) Sponge assemblages of the deep Weddel Sea: ecological and zoogeographic results of the ANDERP I-III and SYSTCO expeditions. Polar Biol 36(7):1059–1068

    Article  Google Scholar 

  • Gollner S, Stuckas H, Kihara TC, Khodami S, Martinez Arbizu P (2016) Mitochondrial DNA analyses indicate high diversity, expansive population growth and high genetic connectivity of vent copepods (Dirivultidae) across different oceans. PLoS One 11(10). https://doi.org/10.1371/journal.pone.0163776

  • Gollner S, Kaiser S, Menzel L, Jones DOB, van Oevelen D, Menot L, Colaço AM, Brown A, Canals M, Cuvelier D, Durden JM, Gebruk A, Aruoriwo EG, Haeckel M, Mestre NC, Mevenkamp L, Morato T, Pham CK, Purser A, Sanchez-Vidal A, Vanreusel A, Vink A, Martinez Arbizu P (2017) Resilience of benthic deep-sea fauna to mineral mining activities. MERE 129:76–101

    CAS  Google Scholar 

  • Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503

    Article  PubMed  Google Scholar 

  • Greve W, Reiners F, Nast J, Hoffmann S (2004) Helgoland roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgol Mar Res 58:274–288

    Article  Google Scholar 

  • Gutperlet R, Capperucci RM, Bartholomä A, Kröncke I (2016) Relationships between spatial patterns of macrofauna communities, sediments and hydroacoustic backscatter data in a highly heterogeneous and human disturbed environment. J Sea Res 121:33–46

    Article  Google Scholar 

  • Hochberg R, Atherton S, Kieneke A (2014) Marine Gastrotricha of little Cayman Island with the description of one new species and an initial assessment of meiofaunal diversity. Mar Biodivers 44:89–113

    Article  Google Scholar 

  • Hofmann T, Raupach MJ, Martínez Arbizu P, Knebelsberger T (2015) An application of in situ hybridization for the identification of commercially important fish species. Fish Res 170:1–8

    Article  Google Scholar 

  • Holler P, Markert E, Bartholomä A, Capperucci R, Hass H-C, Kröncke I, Mielck F, Reimers H-C (2017) Tools to evaluate seafloor integrity: comparison of multi-device acoustic seafloor classifications for benthic macrofauna-driven patterns in the German bight, southern north. Geo-Mar Lett 37:93–109

    Article  CAS  Google Scholar 

  • Holst S, Laakmann S (2014) Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic. J Plankton Res 36:48–63

    Article  Google Scholar 

  • Holst S, Michalik P, Noske M, Krieger J, Sötje I (2016) Potential of X-ray micro-computed tomography for soft-bodied and gelatinous cnidarians with special emphasis on scyphozoan and cubozoan statoliths. J Plankton Res 38:1225–1242

    Article  CAS  Google Scholar 

  • Hoppenrath M (2017) Dinoflagellate taxonomy – a review and proposal of a revised classification. Mar Biodivers 47:381–403

    Article  Google Scholar 

  • Hoppenrath M, Murray S, Chomérat N, Horiguchi T (2014) Marine benthic dinoflagellates - unveiling their worldwide biodiversity. Kleine Senckenberg-Reihe 54:276

    Google Scholar 

  • Hoppenrath M, Yubuki N, Stern R, Leander BS (2017) Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae). Eur J Phycol 52:208–224 http://ipt.vliz.be/eurobis/resource?r=sesam

    Article  Google Scholar 

  • Imajima M, Reuscher M, Fiege D (2012) Ampharetidae (Annelida: Polychaeta) from Japan. Part I: the genus Ampharete Malmgren, 1866, along with a discussion of several taxonomic characters of the family and the introduction of a new identification tool. Zootaxa 3490:75–88

    Google Scholar 

  • Imajima M, Reuscher M, Fiege D (2013) Ampharetidae (Annelida: Polychaeta) from Japan. Part II: genera with elevated and modified notopodia. Zootaxa 3647:137–166

    Article  PubMed  Google Scholar 

  • Janssen A, Kaiser S, Meissner K, Brenke N, Menot L, Martínez Arbizu P (2015) A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PLoS One 10(2):e0117790

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Janssen R, Taviani M (2015) Taxonomic, ecological and historical considerations on the deep-water benthic mollusc Fauna of the Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer, Berlin, Heidelberg, pp 511, 638 pp–529

    Google Scholar 

  • Janssen R (1993) Die Typen und Typoide des Natur-Museums Senckenberg, 81. Die Typen der von Dunker 1860/1861 beschriebenen japanischen Meeresmollusken. Archiv für Molluskenkunde 122 (Zilch-Festschrift) 403–435

  • Kaselowsky J (2004) Taxonomie und Wuchsformen laminar-inkrustierender Bryozoen aus Japan und Neuseeland im latitudinalen Vergleich. PhD thesis, Ruprecht-Karls-Universität Heidelberg. 154 pp

  • Kaselowsky J., Scholz J., Mawatari SF, Probert K., Gerdes G., Kadagies N., Hillmer G (2005) Bryozoans and Microbial Communities of Cool-Temperate and Subtropical Latitudes - Paleoecological Implications. I. Growth morphologies of shallow-water bryozoans settling on bivalve shells (Japan and New Zealand). Facies 50: 349–361. Berlin, Heidelberg (Springer)

  • Kaiser S, Brix S, Kihara TC, Janssen A, Jennings RM (2017) Integrative species delimitation in the deep-sea genus Thaumastosoma Hessler, 1970 (Isopoda, Asellota, Nannoniscidae) reveals a new genus and species from the Atlantic and central Pacific abyss. Deep-Sea Research II, in press

  • Kemp C (2015) The endangered dead. Nature 518:293

    Article  CAS  Google Scholar 

  • Kieneke A, Nikoukar H (2017) Integrative morphological and molecular investigation of Turbanella hyalina Schultze, 1853 (Gastrotricha: Macrodasyida), including a redescription of the species. Zool Anz 267:168–186

    Article  Google Scholar 

  • Kieneke A, Schmidt-Rhaesa A, Hochberg R (2015) A new species of Cephalodasys (Gastrotricha, Macrodasyida) from the Caribbean Sea with a determination key to species of the genus. Zootaxa 3947:367–385

    Article  PubMed  Google Scholar 

  • Klausewitz W (2009) Ein Zeitzeuge berichtet: Mit Hans Hass auf der Xarifa. Nat Mus 139:114–117

    Google Scholar 

  • Kobelt W (1883–1908) Iconographie der schalentragenden europäischen Meeresconchylien. 1: 171 pp. (1883–1887); 2: 139 pp. (1888–1901); 3: 406 pp. (1902–1905); 4: 172 pp. (1906–1908). Cassel (Th. Fischer)

  • Kobelt W (1886–1888) Prodromus faunae molluscorum testaceorum maria europaea inhabitantium. 550 pp. Nürnberg (Bauer & Raspe)

  • Kretzschmar AL, Verma A, Harwood T, Hoppenrath M, Murray SA (2017) Characterisation of Gambierdiscus lapillus sp. nov. (Gonyaulacales, Dinophyceae) a new toxic dinoflagellate from the great barrier reef (Australia). J Phycol 53:283–297

    Article  PubMed  CAS  Google Scholar 

  • Kröncke I (2011) Changes in Dogger Bank macrofauna communities in the 20th century caused by fishing and climate. Estuar Coast Shelf Sci 94:234–245

    Article  Google Scholar 

  • Kröncke I, Reiss H, Dippner JW (2013a) Effects of cold winters and regime shifts on macrofauna communities in the southern North Sea. Estuar Coast Shelf Sci 119:79–90

    Article  Google Scholar 

  • Kröncke I, Reiss H, Eggleton JD, Aldridge J, Bergman MJN, Cochrane S, Craeymeersch J, Degraer S, Desroy N, Dewarumez J-M, Duineveld G, Essink K, Hillewaert H, Lavaleye MSS, Moll A, Nehring S, Newell J, Oug E, Pohlmann T, Rachor E, Robertson M, Rumohr H, Schratzberger M, Smith R, Vanden Berghe E, van Dalfsen J, van Hoey G, Vincx M, Willems W, Rees HL (2011) Changes in North Sea macrofauna communities and species distribution between 1986 and 2000. Estuar Coast Shelf Sci 94:1–15

    Article  Google Scholar 

  • Kröncke I, Reiss H, Türkay M (2013b) Macro- and megafauna communities in three deep basins of the south-East Atlantic. Deep Sea Res I 81:25–35

    Article  Google Scholar 

  • Kröncke I, Türkay M (2003) Structure and function of the macrofauna communities in the deep Angola Basin in relation to environmental factors. Mar Ecol Prog Ser 260:43–53

    Article  Google Scholar 

  • Kröncke I, Türkay M, Fiege D (2003) Macrofauna communities in the eastern Mediterranean deep-sea. PSZNI Mar Ecol 24:193–216

    Article  Google Scholar 

  • Krupp F, Abuzinada AH, Nader IA (1996) A marine wildlife sanctuary for the Arabian gulf - environmental research and conservation following the 1991 gulf war oil spill. NCWCD & Senckenberg, Riyadh & Frankfurt

    Google Scholar 

  • Krylova EM, Janssen R (2006) Vesicomyidae from Edison seamount (south west Pacific: Papua New Guinea: New Ireland fore-arc basin) (Bivalvia: Glossoidea). Arch Molluskenkd 135:231–261

    Google Scholar 

  • Laakmann S, Gerdts G, Erler R, Knebelsberger T, Martínez Arbizu P, Raupach MJ (2013) Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol Ecol Res 13:862–876

    Article  CAS  Google Scholar 

  • Laakmann S, Holst S (2014) Emphasizing the diversity of North Sea hydromedusae by combined morphological and molecular methods. J Plankton Res 36:64–76

    Article  Google Scholar 

  • Lehmacher C, Ramey-Balci P, Wolff L, Fiege D, Purschke G (2016) Ultrastructural differences in presumed photoreceptive organs and molecular data as a means for species discrimination in Polygordius (Annelida, Protodriliformia, Polygordiidae). Org Divers Evol 16:559–576

    Article  Google Scholar 

  • Markhaseva EL, Schulz K, Martínez Arbizu P (2008) New family and genus Rostrocalanus gen. nov. (Crustacea: Calanoida: Rostrocalanidae fam. nov.) from deep Atlantic waters. J Nat Hist 42:2417–2441

    Article  Google Scholar 

  • Martha SO (2014) Things we lost in the fire: the rediscovery of type material from Ehrhard Voigt's early publications (1923–1942) and the bryozoan collection of Hermann Brandes. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of Bryozoology 4: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp 107–127

    Google Scholar 

  • Martha SO, Afshar Y, Ostrovsky AN, Scholz J, Schwaha T, Wood TO (in press) “Variation of the tentacles in Paludicella”: the unfinished work of the German bryozoologist and embryologist Fritz Braem. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of Bryozoology 6: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin

  • Martínez Arbizu P, Brix S (2008) Bringing light into deep sea biodiversity. Zootaxa 1866:1–574

    Google Scholar 

  • Martínez Arbizu P (2006) Phylogenetic relationships within Schminkepinellidae fam. N., a new monophyletic group of marine cyclopinids (Cyclopoida: Copepoda), description of two new genera and four new species. Zoologiya Bespozvonochnykh 3:185–207

    Google Scholar 

  • Martínez Arbizu P, Petrunina A (2017) Two new species of Tantulocarida from the Atlantic deep sea with first CLSM pictures of tantulus larva. Mar Biodivers, in press

  • McKinney FK, Jackson BCJ (1989) Bryozoan evolution. University of Chicago Press, Chicago, 252 pp

    Google Scholar 

  • Meißner K, Bick A, Götting M (2016) Arctic Pholoe (Polychaeta, Pholoidae) when integrative taxonomy helps to sort out barcodes. Zool J Linnean Soc. https://doi.org/10.1111/zoj.12468

  • Meißner K, Bick A, Guggolz T, Götting M (2014) Spionidae (Polychaeta: Canalipalpata: Spionida) from seamounts in the NE Atlantic. Zootaxa 3786:201–245

    Article  PubMed  Google Scholar 

  • Meißner K, Götting M (2015) Spionidae (‘Polychaeta’: Canalipalpata) from Lizard Island (great barrier reef, Australia) the genera Malacoceros, Scolelepis, Spio, Microspio, and Spiophanes. Zootaxa 4019:378–413

    Article  PubMed  Google Scholar 

  • Mertens R (1949) Eduard Rüppell. Leben und Werk eines Forschungsreisenden. Senckenberg-Buch 24, Waldemar Kramer, Frankfurt am Main

  • Meyer J, Kröncke I, Bartholomä A, Dippner JW, Schückel U (2016) Long-term changes in species composition of demersal fish and epifauna species in the jade area (German Wadden Sea/ North Sea) since 1972. Estuar Coast Shelf Sci 181:284–293

    Article  Google Scholar 

  • Michels J (2007) Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans. J Microsc 227:1–7

    Article  PubMed  CAS  Google Scholar 

  • Miljutina MA, Miljutin DM (2012) Seven new and four known species of the genus Acantholaimus (Nematoda: Chromadoridae) from the abyssal manganese nodule field (clarion-Clipperton fracture zone, north-eastern tropical Pacific). Helgol Mar Res 66:413–462

    Article  Google Scholar 

  • Miljutina DM, Miljutin MA (2015) A revision of the genus Paracanthonchus (Cyatholaimidae, Nematoda) with a tabular key to species and a description of P. mamubiae sp. n. From the deep north-western Pacific. Deep Sea Res II 111:104–118

    Article  Google Scholar 

  • Mohrbeck I, Martínez Arbizu P, Glatzel T (2010) Tantulocarida (Crustacea) from the Southern Ocean deep sea and the description of three new species of Tantulacus Huys, Andersen & Kristensen, 1992. Syst Parasitol 77:131–151

    Article  PubMed  Google Scholar 

  • Mohrbeck I, Raupach MJ, Martínez Arbizu P, Knebelsberger T, Laakmann S (2015) Quantity versus quality: high-throughput sequencing – the key to a rapid biodiversity assessment of marine Metazoa? PLoS One 10:e0140342

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mollenhauer D, Ziegler W (1992) Biographien bedeutender Senckenberger. In: 175 Jahre Senckenbergische Naturforschende Gesellschaft, Jubiläumsband I: 247–407. Senckenbergische Naturforschende Gesellschaft, Frankfurt am Main

  • Mühlenhardt-Siegel U (2005a) Cumacea species (Crustacea: Peracarida) from the Deep-Sea expedition DIVA-1 with RV “meteor” to the Angola Basin in July 2000. Families Lampropidae, Bodotriidae. Org Divers Evol 5:113–130

    Article  Google Scholar 

  • Mühlenhardt-Siegel U (2005b) Cumacea species (Crustacea: Peracarida) from the Deep-Sea expedition DIVA-1 with RV “meteor” to the Angola Basin in July 2000. Family Leuconidae. Org Divers Evol 5:131–149

    Article  Google Scholar 

  • Mühlenhardt-Siegel U (2005c) Cumacea species (Crustacea: Peracarida) from the Deep-Sea expedition DIVA-1 with RV “meteor” to the Angola Basin in July 2000. Family Nannastacidae. Org Divers Evol 5:151–170

    Article  Google Scholar 

  • Naderloo R, Apel M (2014) A new species of porcelain crab, Petrolisthes tuerkayi n. Sp. (Crustacea: Anomura: Porcellanidae), from the Persian Gulf. Zootaxa 3881:190–194. https://doi.org/10.11646/zootaxa.3881.2.7

    Article  PubMed  Google Scholar 

  • Naderloo R, Schubart CD (2010) Description of a new species of Parasesarma (Crustacea; Decapoda; Brachyura; Sesarmidae) from the Persian Gulf, based on morphological and genetic characteristics. Zool Anz 249:33–43. https://doi.org/10.1016/j.jcz.2010.01.003

    Article  Google Scholar 

  • Naderloo R, Türkay M, Apel M (2011) Brachyuran crabs of the family Macrophthalmidae Dana, 1851 (Decapoda : Brachyura : Macrophthalmidae) of the Persian Gulf. Zootaxa 2911:1–42

    Google Scholar 

  • Naderloo R (2017) Atlas of crabs of the Persian Gulf. Spring 1–443

  • Neumann H, de Boois I, Kröncke I, Reiss H (2013) Climate change facilitated range expansion of the non-native angular crab Goneplax rhomboides into the North Sea. Mar Ecol Prog Ser 484:143–153

    Article  Google Scholar 

  • Neumann H, Diekmann R, Emeis K-C, Kleeberg U, Moll A, Kröncke I (2017) Full-coverage spatial distribution of epibenthic communities in the south-eastern North Sea in relation to habitat characteristics and fishing effort. Mar Environ Res in press

  • Neumann H, Diekmann R, Kröncke I (2016) The influence of habitat characteristics and fishing effort on functional composition of epifauna in the south-eastern North Sea. Estuar Coast Shelf Sci 169:182–194

    Article  Google Scholar 

  • Núñez J, Barnich R, Brito M, Fiege D (2015a) Familia Aphroditidae Lamarck, 1818. Annelida Polychaeta IV. In: Parapar J, Moreira J, Núñez J, Barnich R, Brito M del C, Fiege D, Capaccioni-Azzati R, El-Haddad M, Fauna Iberica, Vol. 41. Ramos MA et al (eds) Museo Nacional de Ciencias Naturales. CSIC. Madrid, p 87–103

  • Núñez J, Barnich R, Brito M, Fiege D (2015b) Familia Polynoidae Kinberg, 1855. Annelida Polychaeta IV. In: Parapar J, Moreira J, Núñez J, Barnich R, Brito M del C, Fiege D, Capaccioni-Azzati R, El-Haddad M, Fauna Iberica, Vol. 41. Ramos, M.A. et al. (eds) Museo Nacional de Ciencias Naturales. CSIC. Madrid, p 104–201

  • O’Brien TD, Wiebe PH, Falkenhaug T (eds). (2013) ICES Zooplankton Status Report 2010/2011. ICES Cooperative Research Report No. 318. 208 pp.

  • Ostmann A, Nordhaus I, Sørensen MV (2012) First recording of kinorhynchs from java, with the description of a new brackish water species from a mangrove-fringed lagoon. Mar Biodivers 42:79–91

    Article  Google Scholar 

  • Palla R (2016) Valdivia. Die Geschichte der ersten deutschen Tiefsee-Expedition. Galiani, Berlin

    Google Scholar 

  • Purkey SG, Johnson GC (2012) Global contraction of Antarctic bottom water between the 1980s and 2000s. J Clim 25:5830–5844

    Article  Google Scholar 

  • Ramey-Balci PA, Fiege D, Purschke G (2013) Polygordiidae Czerniavsky, 1881. Annelida: Polychaetes. In: Westheide W, Purschke G (eds) Handbook of zoology online. De Gruyter, Berlin, 10 p. http://www.degruyter.com/view/Zoology/bp_029147-6_7

  • Randall JE, Bogorodsky S, Krupp F (in press) Coastal Fishes of the Red Sea. Fauna of Arabia 26

  • Reineck H-E, Singh IB (1973) Depositional sedimentary environments. Springer, Berlin-Heidelberg-New York 439 pp

    Book  Google Scholar 

  • Renz J, Markhaseva EL (2015) First insights into genus level diversity and biogeography of deep sea benthopelagic calanoid copepods in the South Atlantic and Southern Ocean. Deep-Sea Res I 105:96–110

    Article  Google Scholar 

  • Reuscher M, Fiege D, Imajima M (2015a) Ampharetidae (Annelida: Polychaeta) from Japan. Part III: the genus Amphicteis Grube, 1850 and closely related genera. J Mar Biol Assoc UK 95:929–940

    Article  Google Scholar 

  • Reuscher M, Fiege D, Imajima M (2015b) Ampharetidae (Annelida: Polychaeta) from Japan. Part IV. Miscellaneous genera. J Mar Biol Assoc UK 95:1105–1125

    Article  Google Scholar 

  • Richter G (1961) Die Radula der Atlantiden (Heteropoda, Prosobranchia) und ihre Bedeutung für die Systematik und Evolution der Familie. Zeitschrift für Morphologie und Ökologie der Tire 50(2):163–238

    Article  Google Scholar 

  • Richter G, Thorson G (1975) Pelagische Prosobranchier-Larven des Golfs von Neapel. Ophelia 13:109–185

    Article  Google Scholar 

  • Richter G (1974) Die Heteropoden der “Meteor”-Expedition in den Indischen Ozean 1964/65. “Meteor” Forschungs-Ergebnisse (D) 17:55–78

    Google Scholar 

  • Richter G (1993) Zur Kenntnis der Gattung Atlanta (V). Die Atlanta peroni-Gruppe und Atlanta gaudichaudi (Prosobranchia: Heteropoda). Arch Moll 122:189–205

  • Riehl T, Lins, Brandt A (2017 online) The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae). Deep-Sea Res II Top Stud Oceanogr [online] https://doi.org/10.1016/j.dsr2.2017.10.005

  • Rothe BH, Schmidt-Rhaesa A, Kieneke A (2011) The nervous system of Neodasys chaetonotoideus (Gastrotricha: Neodasys) revealed by combining confocal laserscanning and transmission electron microscopy – evolutionary comparison of neuroanatomy within the Gastrotricha and basal Protostomia. Zoomorphology 130:51–84

    Article  Google Scholar 

  • Runge J (ed.) (2015) Arktis bis Afrika : 150 Jahre wissenschaftliche Geographie in Deutschland. Frankfurter geographische Hefte 70: 1–211. Frankfurter Geographischen Gesellschaft

  • Rüppell E (1828–1830) Atlas zu der Reise im nördlichen Afrika. Fische des rothen Meeres. Frankfurt am Main

  • Rüppell E (1830) Beschreibung und Abbildung von 24 Arten kurzschwänzigen Krabben, als Beitrag zur Naturgeschichte des rothen Meeres. H.L. Brönner, Frankfurt am Main

  • Rüppell E (1834) Description of a new genus of pectinibranchiated gastreropodous Mollusca (Leptoconchus). Proc Zool Soc London 2:105–106

    Article  Google Scholar 

  • Rüppell E (1835–1838) Neue Wirbelthiere zu der Fauna von Abyssinien gehörig. Frankfurt a.M.

  • Rüppell E (1844) Intorno ad alcuni Cefalopodi del mare di Messina. Letterea del Dr. Eduardo Rüppell di Frankfort sul Meno al Prof. Anastasio Cocco. Giornale del Gabinetto di Messina 26:1–7

  • Rüppell E, Leuckart FS (1828-1830) Neue wirbellose Thiere des Rothen Meeres. In: Atlas zu der Reise im nördlichen Afrika. 1. Abt. Zoologie: 47 pp

  • Sakurai A (2013) Science and societies in Frankfurt am Main. Pickering & Chatto, London

    Google Scholar 

  • Sanders HL (1958) Benthic studies in Bussards Bay. 1. Animal-sediment relationships. Limnol Oceanogr 3:245–258

    Article  Google Scholar 

  • Schäfer W (1962) Aktuo-Paläontologie nach Studien in der Nordsee. Waldemar Kramer, Frankfurt am Main

    Google Scholar 

  • Schäfer W, Kramer W (1967) Geschichte des Senckenberg-Museums im Grundriss, Chronik der Senckenbergischen Naturforschenden Gesellschaft 1817–1966. Senckenberg-Buch 46. Waldemar Kramer, Frankfurt am Main

  • Schückel U, Kröncke I (2013) Temporal changes in intertidal macrofauna communities over eight decades: a result of eutrophication and climate change. Estuar Coast Shelf Sci 117:210–218

    Article  CAS  Google Scholar 

  • Singer A, Staneva J, Millat G, Kröncke I (2016) Modelling benthic macrofauna and seagrass distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental scenarios. Estuar Coast Shelf Sci 188:99–108

    Article  Google Scholar 

  • Sonnewald M, Apel M (2016) In remembrance of Michael Türkay (3 April 1948-9 September 2015), a tower of strength in the world of crustaceans. J Crustac Biol 36:106–117. https://doi.org/10.1163/1937240X-00002400

    Article  Google Scholar 

  • Sonnewald M, Türkay M (2010) Die Biodiversität des Epibenthos der Doggerbank (Nordsee). Ein Langzeitvergleich unter Einbeziehung von Umweltdaten. In: Epple C, Korn H, Kraus K, Stadler J (eds) Biologische Vielfalt und Klimawandel, Tagungsband mit den Beiträgen der 2. BfN-Forschungskonferenz, 2. – 3. März 2010, Bonn. BfN-Skripten, 274:80

  • Sonnewald M, Türkay M (2012a) The megaepifauna of the Dogger Bank (North Sea) species composition and faunal characteristics 1991–2008. Helgol Mar Res 66:63–75

    Article  Google Scholar 

  • Sonnewald M, Türkay M (2012b) Abundance analyses of mega-epibenthic species on the Dogger Bank (North Sea). Diurnal rhythms and short-term effects caused by repeated trawling, observed at a permanent station. J Sea Res 73:1–6

    Article  Google Scholar 

  • Sonnewald M, Türkay M (2012c) Environmental influence on the bottom and near-bottom megafauna communities of the Dogger Bank: a long-term survey. Helgol Mar Res 66:503–511

    Article  Google Scholar 

  • Spencer Jones M, Scholz J, Grischenko AV, Fujita T (2011) Japanese bryozoans from the Meiji era at the Natural History Museum, London, part 1: the Mitsukuri and Owston collections. Ann Bryozool 3:143–157

    Google Scholar 

  • Stuckas H, Knöbel L, Schade H, Breusing C, Hinrichsen HH, Bartel M, Langguth C, Melzner F (2017) Combining hydrodynamic modelling with geneticvs: can passive larval drift shape the genetic structure of Baltic Mytilus populations? Mol Ecol 26:2765–2782

    Article  PubMed  Google Scholar 

  • Türkay M (1974) Dr. Richard Bott (1902-1974). Nat Mus 104:135–136

    Google Scholar 

  • Türkay M (1975) Dr. phil. nat. Richard Bott (1902-1974) Leben und carcinologisches Werk. Crustaceana 28:298–302

    Article  Google Scholar 

  • Türkay M (1986) Crustacea Decapoda Reptantia der Tiefsee des Roten Meeres. Senckenbergiana Marit 18:123–185

    Google Scholar 

  • Türkay M (1991) Forschungsreise zur Doggerbank. Globus 1991:229–233

    Google Scholar 

  • Türkay M (1992) Forschungsreise zur Doggerbank. Nat Mus 122:323

    Google Scholar 

  • Türkay M, Kröncke I (2004) Eine Insel unter Wasser: Die Doggerbank. Nat Mus 134:261–277

    Google Scholar 

  • Türkay M, Allspach A, Menner M (2011) Senckenbergisches Sammlungsverwaltungssystem, SeSam. Senckenbergische Naturforschende Gesellschaft, Frankfurt, Germany. Senckenberg Nat Forsch Mus 141

  • Vanreusel A, Hilario A, Ribeiro PA, Menot L, Martinez Arbizu P (2016) Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci Rep 6:26808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Veit-Köhler G (2004) Kliopsyllus andeep sp. n. (Copepoda: Harpacticoida) from the Antarctic deep sea – a copepod closely related to certain shallow-water species. Deep-Sea Res II 51:169–1641

    Google Scholar 

  • Veit-Köhler G, Guilini K, Peeken I, Quillfeldt P, Mayr C (2013) Carbon and nitrogen stable isotope signatures of deep-sea meiofauna follow oceanographical gradients across the Southern Ocean. Prog Oceanogr 110:69–79

    Article  Google Scholar 

  • Voigt E (1924) Beiträge zur Kenntnis der Bryozoenfauna der subherzynen Kreidemulde. Paläontol Z 6:93–173

    Article  Google Scholar 

  • Wehe T (2006) Revision of the scale worms (Polychaeta: Aphroditoidea) occurring in the seas surrounding the Arabian peninsula. Part I: Polynoidae. Fauna of Arabia 22:23–197

    Google Scholar 

  • Wehe T (2007) Revision of the scale worms (Polychaeta: Aphroditoidea) occurring in the seas surrounding the Arabian peninsula. Part II Sigalionidae. Fauna of Arabia 23:41–124

    Google Scholar 

  • Weinert M, Kröncke I, Mathis M, Neumann H, Pohlmann T, Reiss H (2016) Modelling climate change effects on benthos: distributional shifts in the North Sea from 2001 to 2099. Estuar Coast Shelf Sci 175:157–168

    Article  Google Scholar 

  • Wen J, Ickert-Bond SM, Appelhans MS, Dorr LJ, Funk VA (2015) Collections-based systematics: opportunities and outlook for 2050. J Syst Evol 53:477–488

    Article  Google Scholar 

  • Wenz W (1938-1944) Gastropoda. In: Handbuch der Paläozoologie, 6. I (Prosobranchia). Bornträger, Berlin

  • Zajonz U, Lavergne E, Klaus R, Krupp F, Sheikh MA, Naseeb FS (2016) The coastal fishes and fisheries of the Socotra archipelago, Yemen. Mar Poll Bull 105:660–675. https://doi.org/10.1016/j.marpolbul.2015.11.025

    Article  CAS  Google Scholar 

  • Zilch A (1959-1960) Gastropoda. Fortsetzung von W. Wenz. In: Handbuch der Paläozoologie 6. II (Euthyneura). Bornträger, Berlin

  • Zinßmeister C, Wilke T, Hoppenrath M (2017) Species diversity of dinophysoid dinoflagellates of the clarion Clipperton fracture zone. Mar Biodivers 47:271–287

    Article  Google Scholar 

Download references

Acknowledgements

Natascha Sharon Pontius (Frankfurt am Main, Germany) is thanked for help with improving the language. For useful comments and for improving the manuscript, we would also like to thank Priska Schäfer (Kiel, Germany).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Brandt.

Ethics declarations

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Field study

Not applicable.

Registration of new species, scientific names, and genetic/genomic data

Not applicable.

Additional information

Communicated by S. Gollner

Electronic supplementary material

Supplementary Table 1

Major marine expeditions conducted by staff of the DZMB. (XLSX 13 kb)

Supplementary Table 2

Samples and specimens processed by the DZMB. (XLSX 16 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Brandt, A., Scholz, J., Allspach, A. et al. 200 years of marine research at Senckenberg: selected highlights. Mar Biodiv 48, 159–178 (2018). https://doi.org/10.1007/s12526-017-0839-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-017-0839-4

Keywords

Navigation