200 years of marine research at Senckenberg: selected highlights
- 301 Downloads
Abstract
A history of the Marine Zoology Department at the Senckenberg Society for the Study of Nature (Senckenbergische Naturforschende Gesellschaft) has not yet been published. Still, there is no lack of documentation of research activities at the Senckenberg Research Institute and Natural History Museum. Marine zoology studies began with Eduard Rüppell (1794–1884) after his admission to the Senckenberg Society in 1818, one year after its foundation, and his collections of fishes, molluscans and crustaceans from the Mediterranean made in 1820. During the nineteenth century, further progress in marine zoology studies was slow and serious interest in the study of marine organisms expanded significantly only during the twentieth century after the foundation of the marine station at Wilhelmshaven in 1928. The amount of marine biology and geology literature originating from researchers associated with the Senckenberg has become overwhelming and the dwarfs once standing on the shoulder of giants have become giants themselves. In this article, we present the Marine Zoology Department, its sections and assess the most important researchers associated with the Senckenberg Research Institute including the founders of the sections and their place in two centuries of history since the foundation of the Senckenberg Society in 1817.
Keywords
Senckenberg history marine research expeditionsNotes
Acknowledgements
Natascha Sharon Pontius (Frankfurt am Main, Germany) is thanked for help with improving the language. For useful comments and for improving the manuscript, we would also like to thank Priska Schäfer (Kiel, Germany).
Compliance with ethical standards
Ethical approval
This article does not contain any studies with animals performed by any of the authors.
Conflict of interest
The authors declare that they have no conflict of interest.
Field study
Not applicable.
Registration of new species, scientific names, and genetic/genomic data
Not applicable.
Supplementary material
References
- Adl SM, Simpson AGB, Lane CE, Lukes J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Gall LL, Lynn DH, McMantus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493PubMedPubMedCentralCrossRefGoogle Scholar
- Barnich R, Fiege D (2000) Borstenwürmer. Schillernde Bewohner der Meere Kl Senckenberg-Reihe Nr 37:64 pGoogle Scholar
- Barnich R, Fiege D (2003) The Aphroditoidea (Annelida: Polychaeta) of the Mediterranean Sea. Abh Senckenb Naturforsch Ges 559:1–167Google Scholar
- Barnich R, Fiege D (2009) Revision of the genus Harmothoe Kinberg, 1856 (Polychaeta: Polynoidae) in the Northeast Atlantic. Zootaxa 2104:1–76Google Scholar
- Bartsch I (2003) Lohmannellinae (Halacaridae: Acari) from the great meteor seamount (northeastern Atlantic) description of new species and reflections on the origin of the seamount fauna. Mitt Hamb Zool Mus Inst 100:101–117Google Scholar
- Bartsch I (2004) Halacaridae (Acari) from the great meteor seamount (northeastern Atlantic). Description of Simognathus species. Mitt Hamb Zool Mus Inst 101:185–196Google Scholar
- Benedix G, Jacob DE, Lotz BH, Martha SO, Matsuyama K, Morales LFG, Neu C, Scholz J (2016) Bryozoen als Architekten. Wissenschaftler entschlüsseln die Choreografie aufeinanderfolgender Generationen mit moderner Technik. Senckenberg Nat Forsch Mus 146:14–19Google Scholar
- Berger F (2007) Frankfurt und der Nordpol. Schriften des Historischen Museums Frankfurt am Main 26:1–216Google Scholar
- Bitschofsky F (2013) Distribution over space and time in Epizoobiontic North Sea bryozoans. Lecture Notes in Earth System Sciences 143:1–12CrossRefGoogle Scholar
- Bitschofsky F, Forster S, Scholz J (2011) Regional and temporal changes in epizoobiontic bryozoan-communities of Flustra foliacea (Linnaeus, 1758) and implications for North Sea ecology. Estuar Coast Shelf Sci 91:423–433CrossRefGoogle Scholar
- Boersma M, Wiltshire KH, Kong SM, Greve W, Renz J (2015) Long-term change in the copepod community in the southern German bight. J Sea Res 101:41–50CrossRefGoogle Scholar
- Boettger CR (1915) Die von Dr. Merton auf den Aru- und Kei-Inseln gesammelten Wassermollusken. Abh Senckenb Naturforsch Ges 35:125–145Google Scholar
- Boettger CR (1916) Die Molluskenausbeute der Hanseatischen Südsee-Expedition 1909. Abh Senckenb Naturforsch Ges 36:287–308Google Scholar
- Boettger O (1887) Die ostasiatischen Vertreter der Gattung Rissoina I. Jahrbücher der deutschen malakozologischen Gesellschaft 14:125–135Google Scholar
- Boettger O (1893) Die marinen Mollusken der Philippinen, nach den Sammlungen des Herrn José Florencio Quadras in Manila (I-III). Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 25: 97–115, 153–167, 185–193Google Scholar
- Boettger O (1895) Die marinen Mollusken der Philippinen, nach den Sammlungen des Herrn José Florencio Quadras in Manila (IV). Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 27(1–20):41–63Google Scholar
- Boettger O (1896) Die marinen Mollusken der Philippinen, nach den Sammlungen des Herrn José Florencio Quadras in Manila (V). Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 28:41–56Google Scholar
- Böggemann M (2002) Revision of the Glyceridae GRUBE 1850 (Annelida: Polychaeta). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft Frankfurt am Main 555:1–249Google Scholar
- Bott R (1955) Die Süßwasserkrabben von Afrika (Crust., Decap.) und ihre Stammesgeschichte. Annales du Musée Royal du Congo Belge. C Zool Série III 1:209–352Google Scholar
- Brandt A, Frutos I, Bober S, Brix S, Brenke N, Guggolz T, Heitland N, Malyutina M, Minzlaff U, Riehl T, Schwabe E, Zinkann A-C, Linse K (2017) Composition of abyssal macrofauna along the Vema fracture zone and the hadal Puerto Rico trench, northern tropical Atlantic. Deep Sea Res II. https://doi.org/10.1016/j.dsr2.2017.07.014
- Brandt A, Gooday AJ, Brix SB, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe J, Janussen D, Kaiser S, Linse K, Malyutina M, Brandao S, Pawlowski J, Raupach M (2007) The Southern Ocean deep sea: first insights into biodiversity and biogeography. Nature 447:307–311PubMedCrossRefGoogle Scholar
- Brandt A, Gutt J, Hildebrandt M, Pawlowski J, Schwendner J, Soltwedel T, Thomsen L (2016) Cutting the umbilical - new technological perspectives in benthic deep-sea research. Journal of Marine Systems and Engineering 4:36. https://doi.org/10.3390/jmse4020036 CrossRefGoogle Scholar
- Brenke N, Fanenbruck M, George KH (2017) A new parasitic deep-sea copepod from the Angola Basin (southeast Atlantic Ocean) Abyssotaurus vermiambatus gen. Et sp. nov. (Copepoda: Cyclopoida: Serpulidicolidae stock, 1979), with remarks on serpulidicolid systematics and a key to the species. Mar Biodivers. https://doi.org/10.1007/s12526-017-0724-1
- Brix S, Leese F, Riehl T, Kihara TC (2014a) A new genus and new species of Desmosomatidae Sars, 1897 (isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. Mar Biodivers. https://doi.org/10.1007/s12526-014-0218-3
- Brix S, Meißner K, Stransky B, Halanych KM, Jennings RM, Kocot KM, Svavarsson J (2014b) The IceAGE project – a followup of BIOICE. Polish Polar Res 35:141–150Google Scholar
- Brix S, Leese F, Riehl T, Kihara TC (2015) A new genus and new species of Desmosomatidae Sars, 1897 (isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. Mar Biodivers 45:7–61CrossRefGoogle Scholar
- Brown A, Thatje S (2015) The effects of changing climate on faunal depth distributions determine winners and losers. Glob Chang Biol 21:173–180PubMedCrossRefGoogle Scholar
- Bruce NL, Brix S, Balfour N, Kihara TC, Weigand AM, Mehterian S, Iliffe TM (2017) A new genus for Cirolana troglexuma Botosaneanu & Iliffe, 1997, an anchialine cave dwelling cirolanid isopod (Crustacea, isopoda, Cirolanidae) from the Bahamas. Subterranean Biol 21:57–92CrossRefGoogle Scholar
- Burrell AS, Disotell TR, Bergey CM (2015) The use of museum specimens with high-throughput DNA sequencers. J Human Evol 79:35–44CrossRefGoogle Scholar
- Candás M, Martínez Arbizu P, Urgorri V (2013) A new species of Leptopontiidae Lang, 1948 (Copepoda: Harpacticoida) from the Ría de Ferrol (north-west Iberian peninsula). J Nat Hist 47:409–425CrossRefGoogle Scholar
- Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker DTQ, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1029–1136. http://pure.iiasa.ac.at/10551/ Accessed 31 August 2017
- Cosel RV (1982) Ergebnisse deutsch-portugiesischer Sammelreisen auf den Kapverdischen Inseln (República de Cabo Verde). Vorläufige Liste der marinen Mollusken – Courier Forschungs-Institut Senckenberg 52:15–25Google Scholar
- Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB (2015) Climate change tightens a metabolic constraint on marine habitats. Science 348(6239):1132–1135PubMedCrossRefGoogle Scholar
- Dörjes J (1992a) Langfristige Veränderungen des Artenbestandes der Makroendofauna im Vorstrand der Düneninsel Norderney in der Zeit von 1976 bis 1988 (Nordsee). Senckenbergiana marit. 22:11–19Google Scholar
- Dörjes J (1992b) Langzeitentwicklung makrobenthischer Tierarten im Jadebusen (Nordsee) während der Jahre 1974–1987. Senckenberg Marit 22:37–57Google Scholar
- Dörjes J, Michaelis H, Rhode B (1986) Long-term studies of macro-zoobenthos in the intertidal and shallow subtidal habitats near the island of Norderney (east Frisian coast, Germany). Hydrobiol 142:217–232CrossRefGoogle Scholar
- Dunker WBRH (1859) Neue japanische Mollusken. Malakozoologische Blätter 6:221–240Google Scholar
- Dunker WBRH (1861) Mollusca Japonica. Schweitzerbart, StuttgartGoogle Scholar
- Faulwetter S, Vasileiadou A, Kouratoras M, Dailianis T, Arvanitidis C (2013) Micro-computed tomography: introducing new dimensions to taxonomy. ZooKeys 263:1–45CrossRefGoogle Scholar
- Fedorov PV, Koromyslova AV, Martha SO (2017) The oldest bryozoans of Baltoscandia from the lowermost Floian (Ordovician) of north-western Russia: two new rare, small and simple species of Revalotrypidae. PalZ 91:353–373CrossRefGoogle Scholar
- Fernández R, Kvist S, Lenihan J, Giribet G, Ziegler A (2014) Sine Systemate chaos? A versatile tool for earthworm taxonomy: non-destructive imaging of freshly fixed and museum specimens using micro-computed tomography. PLoS One 9(5):e96617PubMedPubMedCentralCrossRefGoogle Scholar
- Fiege D (2016) Sternaspidae Carus, 1863. In: Westheide W, Purschke G (eds) Handbook of Zoology Online. Annelida: Polychaetes. De Gruyter, Berlin, 17 pp. http://www.degruyter.com/view/Zoology/bp_029147-6_53
- Fiege D, Ramey P, Ebbe B (2010) Diversity and distributional patterns of Polychaeta in the deep South Atlantic. Deep-Sea Res I 57:1329–1344CrossRefGoogle Scholar
- George KH (2013) Faunistic research on metazoan meiofauna from seamounts – a review. Meiofauna Marina 20:1–32Google Scholar
- George KH (2017) Phylogeny of the taxon Paralaophontodes Lang (Copepoda, Harpacticoida, Laophontodinae), including species descriptions, chorological remarks, and a key to species. Zoosystematics Evol 93:211–241CrossRefGoogle Scholar
- George KH, Brökeland W (2009) Deep-sea taxonomy – a contribution to our knowledge of biodiversity. Zootaxa 2096:1–488Google Scholar
- George KH, Gheerardyn H (2015) Remarks on the genus Laophontodes T. Scott, 1894 (Copepoda, Harpacticoida, Ancorabolidae, Laophontodinae), including the (re-) description of four species. Zool Anz 259:61–96CrossRefGoogle Scholar
- George KH, Veit-Köhler G, Martínez Arbizu P, Seifried S, Rose A, Willen E, Bröhldick K, Corgisinho PH, Drewes J, Menzel L, Moura G, Schminke KH (2014) Community structure and species diversity of Harpacticoida (Crustacea: Copepoda) at two sites in the deep sea of the Angola Basin (Southeast Atlantic). Org Divers Evol 14:57–73CrossRefGoogle Scholar
- George KH, Veit-Köhler G, Martínez Arbizu PM (2016) Das Deutsche Zentrum für marine Biodiversitätsforschung. Senckenberg Nat Forsch Mus 146:26–33Google Scholar
- Gerdes G, Kadagies N, Kaselowsky J, Lauer A, Scholz J (2005) Bryozoans and microbial communities of cool-temperate and subtropical latitudes – Paleoecological implications part II. Diversity of microbial fouling on laminar shallow marine bryozoans of Japan and New Zealand. Facies 50:363–389CrossRefGoogle Scholar
- Gheerardyn H, Veit-Köhler G (2009) Diversity and large-scale biogeography of Paramesochridae (Copepoda, Harpacticoida) in South Atlantic abyssal plains and the deep Southern Ocean. Deep Sea Res I 56:1804–1815CrossRefGoogle Scholar
- Göcke C, Janussen (2013) Sponge assemblages of the deep Weddel Sea: ecological and zoogeographic results of the ANDERP I-III and SYSTCO expeditions. Polar Biol 36(7):1059–1068CrossRefGoogle Scholar
- Gollner S, Stuckas H, Kihara TC, Khodami S, Martinez Arbizu P (2016) Mitochondrial DNA analyses indicate high diversity, expansive population growth and high genetic connectivity of vent copepods (Dirivultidae) across different oceans. PLoS One 11(10). https://doi.org/10.1371/journal.pone.0163776
- Gollner S, Kaiser S, Menzel L, Jones DOB, van Oevelen D, Menot L, Colaço AM, Brown A, Canals M, Cuvelier D, Durden JM, Gebruk A, Aruoriwo EG, Haeckel M, Mestre NC, Mevenkamp L, Morato T, Pham CK, Purser A, Sanchez-Vidal A, Vanreusel A, Vink A, Martinez Arbizu P (2017) Resilience of benthic deep-sea fauna to mineral mining activities. MERE 129:76–101Google Scholar
- Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503PubMedCrossRefGoogle Scholar
- Greve W, Reiners F, Nast J, Hoffmann S (2004) Helgoland roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgol Mar Res 58:274–288CrossRefGoogle Scholar
- Gutperlet R, Capperucci RM, Bartholomä A, Kröncke I (2016) Relationships between spatial patterns of macrofauna communities, sediments and hydroacoustic backscatter data in a highly heterogeneous and human disturbed environment. J Sea Res 121:33–46CrossRefGoogle Scholar
- Hochberg R, Atherton S, Kieneke A (2014) Marine Gastrotricha of little Cayman Island with the description of one new species and an initial assessment of meiofaunal diversity. Mar Biodivers 44:89–113CrossRefGoogle Scholar
- Hofmann T, Raupach MJ, Martínez Arbizu P, Knebelsberger T (2015) An application of in situ hybridization for the identification of commercially important fish species. Fish Res 170:1–8CrossRefGoogle Scholar
- Holler P, Markert E, Bartholomä A, Capperucci R, Hass H-C, Kröncke I, Mielck F, Reimers H-C (2017) Tools to evaluate seafloor integrity: comparison of multi-device acoustic seafloor classifications for benthic macrofauna-driven patterns in the German bight, southern north. Geo-Mar Lett 37:93–109CrossRefGoogle Scholar
- Holst S, Laakmann S (2014) Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic. J Plankton Res 36:48–63CrossRefGoogle Scholar
- Holst S, Michalik P, Noske M, Krieger J, Sötje I (2016) Potential of X-ray micro-computed tomography for soft-bodied and gelatinous cnidarians with special emphasis on scyphozoan and cubozoan statoliths. J Plankton Res 38:1225–1242CrossRefGoogle Scholar
- Hoppenrath M (2017) Dinoflagellate taxonomy – a review and proposal of a revised classification. Mar Biodivers 47:381–403CrossRefGoogle Scholar
- Hoppenrath M, Murray S, Chomérat N, Horiguchi T (2014) Marine benthic dinoflagellates - unveiling their worldwide biodiversity. Kleine Senckenberg-Reihe 54:276Google Scholar
- Hoppenrath M, Yubuki N, Stern R, Leander BS (2017) Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae). Eur J Phycol 52:208–224 http://ipt.vliz.be/eurobis/resource?r=sesam CrossRefGoogle Scholar
- Imajima M, Reuscher M, Fiege D (2012) Ampharetidae (Annelida: Polychaeta) from Japan. Part I: the genus Ampharete Malmgren, 1866, along with a discussion of several taxonomic characters of the family and the introduction of a new identification tool. Zootaxa 3490:75–88Google Scholar
- Imajima M, Reuscher M, Fiege D (2013) Ampharetidae (Annelida: Polychaeta) from Japan. Part II: genera with elevated and modified notopodia. Zootaxa 3647:137–166PubMedCrossRefGoogle Scholar
- Janssen A, Kaiser S, Meissner K, Brenke N, Menot L, Martínez Arbizu P (2015) A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PLoS One 10(2):e0117790PubMedPubMedCentralCrossRefGoogle Scholar
- Janssen R, Taviani M (2015) Taxonomic, ecological and historical considerations on the deep-water benthic mollusc Fauna of the Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer, Berlin, Heidelberg, pp 511, 638 pp–529Google Scholar
- Janssen R (1993) Die Typen und Typoide des Natur-Museums Senckenberg, 81. Die Typen der von Dunker 1860/1861 beschriebenen japanischen Meeresmollusken. Archiv für Molluskenkunde 122 (Zilch-Festschrift) 403–435Google Scholar
- Kaselowsky J (2004) Taxonomie und Wuchsformen laminar-inkrustierender Bryozoen aus Japan und Neuseeland im latitudinalen Vergleich. PhD thesis, Ruprecht-Karls-Universität Heidelberg. 154 ppGoogle Scholar
- Kaselowsky J., Scholz J., Mawatari SF, Probert K., Gerdes G., Kadagies N., Hillmer G (2005) Bryozoans and Microbial Communities of Cool-Temperate and Subtropical Latitudes - Paleoecological Implications. I. Growth morphologies of shallow-water bryozoans settling on bivalve shells (Japan and New Zealand). Facies 50: 349–361. Berlin, Heidelberg (Springer)Google Scholar
- Kaiser S, Brix S, Kihara TC, Janssen A, Jennings RM (2017) Integrative species delimitation in the deep-sea genus Thaumastosoma Hessler, 1970 (Isopoda, Asellota, Nannoniscidae) reveals a new genus and species from the Atlantic and central Pacific abyss. Deep-Sea Research II, in pressGoogle Scholar
- Kemp C (2015) The endangered dead. Nature 518:293CrossRefGoogle Scholar
- Kieneke A, Nikoukar H (2017) Integrative morphological and molecular investigation of Turbanella hyalina Schultze, 1853 (Gastrotricha: Macrodasyida), including a redescription of the species. Zool Anz 267:168–186CrossRefGoogle Scholar
- Kieneke A, Schmidt-Rhaesa A, Hochberg R (2015) A new species of Cephalodasys (Gastrotricha, Macrodasyida) from the Caribbean Sea with a determination key to species of the genus. Zootaxa 3947:367–385PubMedCrossRefGoogle Scholar
- Klausewitz W (2009) Ein Zeitzeuge berichtet: Mit Hans Hass auf der Xarifa. Nat Mus 139:114–117Google Scholar
- Kobelt W (1883–1908) Iconographie der schalentragenden europäischen Meeresconchylien. 1: 171 pp. (1883–1887); 2: 139 pp. (1888–1901); 3: 406 pp. (1902–1905); 4: 172 pp. (1906–1908). Cassel (Th. Fischer)Google Scholar
- Kobelt W (1886–1888) Prodromus faunae molluscorum testaceorum maria europaea inhabitantium. 550 pp. Nürnberg (Bauer & Raspe)Google Scholar
- Kretzschmar AL, Verma A, Harwood T, Hoppenrath M, Murray SA (2017) Characterisation of Gambierdiscus lapillus sp. nov. (Gonyaulacales, Dinophyceae) a new toxic dinoflagellate from the great barrier reef (Australia). J Phycol 53:283–297PubMedCrossRefGoogle Scholar
- Kröncke I (2011) Changes in Dogger Bank macrofauna communities in the 20th century caused by fishing and climate. Estuar Coast Shelf Sci 94:234–245CrossRefGoogle Scholar
- Kröncke I, Reiss H, Dippner JW (2013a) Effects of cold winters and regime shifts on macrofauna communities in the southern North Sea. Estuar Coast Shelf Sci 119:79–90CrossRefGoogle Scholar
- Kröncke I, Reiss H, Eggleton JD, Aldridge J, Bergman MJN, Cochrane S, Craeymeersch J, Degraer S, Desroy N, Dewarumez J-M, Duineveld G, Essink K, Hillewaert H, Lavaleye MSS, Moll A, Nehring S, Newell J, Oug E, Pohlmann T, Rachor E, Robertson M, Rumohr H, Schratzberger M, Smith R, Vanden Berghe E, van Dalfsen J, van Hoey G, Vincx M, Willems W, Rees HL (2011) Changes in North Sea macrofauna communities and species distribution between 1986 and 2000. Estuar Coast Shelf Sci 94:1–15CrossRefGoogle Scholar
- Kröncke I, Reiss H, Türkay M (2013b) Macro- and megafauna communities in three deep basins of the south-East Atlantic. Deep Sea Res I 81:25–35CrossRefGoogle Scholar
- Kröncke I, Türkay M (2003) Structure and function of the macrofauna communities in the deep Angola Basin in relation to environmental factors. Mar Ecol Prog Ser 260:43–53CrossRefGoogle Scholar
- Kröncke I, Türkay M, Fiege D (2003) Macrofauna communities in the eastern Mediterranean deep-sea. PSZNI Mar Ecol 24:193–216CrossRefGoogle Scholar
- Krupp F, Abuzinada AH, Nader IA (1996) A marine wildlife sanctuary for the Arabian gulf - environmental research and conservation following the 1991 gulf war oil spill. NCWCD & Senckenberg, Riyadh & FrankfurtGoogle Scholar
- Krylova EM, Janssen R (2006) Vesicomyidae from Edison seamount (south west Pacific: Papua New Guinea: New Ireland fore-arc basin) (Bivalvia: Glossoidea). Arch Molluskenkd 135:231–261Google Scholar
- Laakmann S, Gerdts G, Erler R, Knebelsberger T, Martínez Arbizu P, Raupach MJ (2013) Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol Ecol Res 13:862–876CrossRefGoogle Scholar
- Laakmann S, Holst S (2014) Emphasizing the diversity of North Sea hydromedusae by combined morphological and molecular methods. J Plankton Res 36:64–76CrossRefGoogle Scholar
- Lehmacher C, Ramey-Balci P, Wolff L, Fiege D, Purschke G (2016) Ultrastructural differences in presumed photoreceptive organs and molecular data as a means for species discrimination in Polygordius (Annelida, Protodriliformia, Polygordiidae). Org Divers Evol 16:559–576CrossRefGoogle Scholar
- Markhaseva EL, Schulz K, Martínez Arbizu P (2008) New family and genus Rostrocalanus gen. nov. (Crustacea: Calanoida: Rostrocalanidae fam. nov.) from deep Atlantic waters. J Nat Hist 42:2417–2441CrossRefGoogle Scholar
- Martha SO (2014) Things we lost in the fire: the rediscovery of type material from Ehrhard Voigt's early publications (1923–1942) and the bryozoan collection of Hermann Brandes. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of Bryozoology 4: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp 107–127Google Scholar
- Martha SO, Afshar Y, Ostrovsky AN, Scholz J, Schwaha T, Wood TO (in press) “Variation of the tentacles in Paludicella”: the unfinished work of the German bryozoologist and embryologist Fritz Braem. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of Bryozoology 6: aspects of the history of research on bryozoans. International Bryozoology Association, DublinGoogle Scholar
- Martínez Arbizu P, Brix S (2008) Bringing light into deep sea biodiversity. Zootaxa 1866:1–574Google Scholar
- Martínez Arbizu P (2006) Phylogenetic relationships within Schminkepinellidae fam. N., a new monophyletic group of marine cyclopinids (Cyclopoida: Copepoda), description of two new genera and four new species. Zoologiya Bespozvonochnykh 3:185–207Google Scholar
- Martínez Arbizu P, Petrunina A (2017) Two new species of Tantulocarida from the Atlantic deep sea with first CLSM pictures of tantulus larva. Mar Biodivers, in pressGoogle Scholar
- McKinney FK, Jackson BCJ (1989) Bryozoan evolution. University of Chicago Press, Chicago, 252 ppGoogle Scholar
- Meißner K, Bick A, Götting M (2016) Arctic Pholoe (Polychaeta, Pholoidae) when integrative taxonomy helps to sort out barcodes. Zool J Linnean Soc. https://doi.org/10.1111/zoj.12468
- Meißner K, Bick A, Guggolz T, Götting M (2014) Spionidae (Polychaeta: Canalipalpata: Spionida) from seamounts in the NE Atlantic. Zootaxa 3786:201–245PubMedCrossRefGoogle Scholar
- Meißner K, Götting M (2015) Spionidae (‘Polychaeta’: Canalipalpata) from Lizard Island (great barrier reef, Australia) the genera Malacoceros, Scolelepis, Spio, Microspio, and Spiophanes. Zootaxa 4019:378–413PubMedCrossRefGoogle Scholar
- Mertens R (1949) Eduard Rüppell. Leben und Werk eines Forschungsreisenden. Senckenberg-Buch 24, Waldemar Kramer, Frankfurt am MainGoogle Scholar
- Meyer J, Kröncke I, Bartholomä A, Dippner JW, Schückel U (2016) Long-term changes in species composition of demersal fish and epifauna species in the jade area (German Wadden Sea/ North Sea) since 1972. Estuar Coast Shelf Sci 181:284–293CrossRefGoogle Scholar
- Michels J (2007) Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans. J Microsc 227:1–7PubMedCrossRefGoogle Scholar
- Miljutina MA, Miljutin DM (2012) Seven new and four known species of the genus Acantholaimus (Nematoda: Chromadoridae) from the abyssal manganese nodule field (clarion-Clipperton fracture zone, north-eastern tropical Pacific). Helgol Mar Res 66:413–462CrossRefGoogle Scholar
- Miljutina DM, Miljutin MA (2015) A revision of the genus Paracanthonchus (Cyatholaimidae, Nematoda) with a tabular key to species and a description of P. mamubiae sp. n. From the deep north-western Pacific. Deep Sea Res II 111:104–118CrossRefGoogle Scholar
- Mohrbeck I, Martínez Arbizu P, Glatzel T (2010) Tantulocarida (Crustacea) from the Southern Ocean deep sea and the description of three new species of Tantulacus Huys, Andersen & Kristensen, 1992. Syst Parasitol 77:131–151PubMedCrossRefGoogle Scholar
- Mohrbeck I, Raupach MJ, Martínez Arbizu P, Knebelsberger T, Laakmann S (2015) Quantity versus quality: high-throughput sequencing – the key to a rapid biodiversity assessment of marine Metazoa? PLoS One 10:e0140342PubMedPubMedCentralCrossRefGoogle Scholar
- Mollenhauer D, Ziegler W (1992) Biographien bedeutender Senckenberger. In: 175 Jahre Senckenbergische Naturforschende Gesellschaft, Jubiläumsband I: 247–407. Senckenbergische Naturforschende Gesellschaft, Frankfurt am MainGoogle Scholar
- Mühlenhardt-Siegel U (2005a) Cumacea species (Crustacea: Peracarida) from the Deep-Sea expedition DIVA-1 with RV “meteor” to the Angola Basin in July 2000. Families Lampropidae, Bodotriidae. Org Divers Evol 5:113–130CrossRefGoogle Scholar
- Mühlenhardt-Siegel U (2005b) Cumacea species (Crustacea: Peracarida) from the Deep-Sea expedition DIVA-1 with RV “meteor” to the Angola Basin in July 2000. Family Leuconidae. Org Divers Evol 5:131–149CrossRefGoogle Scholar
- Mühlenhardt-Siegel U (2005c) Cumacea species (Crustacea: Peracarida) from the Deep-Sea expedition DIVA-1 with RV “meteor” to the Angola Basin in July 2000. Family Nannastacidae. Org Divers Evol 5:151–170CrossRefGoogle Scholar
- Naderloo R, Apel M (2014) A new species of porcelain crab, Petrolisthes tuerkayi n. Sp. (Crustacea: Anomura: Porcellanidae), from the Persian Gulf. Zootaxa 3881:190–194. https://doi.org/10.11646/zootaxa.3881.2.7 PubMedCrossRefGoogle Scholar
- Naderloo R, Schubart CD (2010) Description of a new species of Parasesarma (Crustacea; Decapoda; Brachyura; Sesarmidae) from the Persian Gulf, based on morphological and genetic characteristics. Zool Anz 249:33–43. https://doi.org/10.1016/j.jcz.2010.01.003 CrossRefGoogle Scholar
- Naderloo R, Türkay M, Apel M (2011) Brachyuran crabs of the family Macrophthalmidae Dana, 1851 (Decapoda : Brachyura : Macrophthalmidae) of the Persian Gulf. Zootaxa 2911:1–42Google Scholar
- Naderloo R (2017) Atlas of crabs of the Persian Gulf. Spring 1–443Google Scholar
- Neumann H, de Boois I, Kröncke I, Reiss H (2013) Climate change facilitated range expansion of the non-native angular crab Goneplax rhomboides into the North Sea. Mar Ecol Prog Ser 484:143–153CrossRefGoogle Scholar
- Neumann H, Diekmann R, Emeis K-C, Kleeberg U, Moll A, Kröncke I (2017) Full-coverage spatial distribution of epibenthic communities in the south-eastern North Sea in relation to habitat characteristics and fishing effort. Mar Environ Res in pressGoogle Scholar
- Neumann H, Diekmann R, Kröncke I (2016) The influence of habitat characteristics and fishing effort on functional composition of epifauna in the south-eastern North Sea. Estuar Coast Shelf Sci 169:182–194CrossRefGoogle Scholar
- Núñez J, Barnich R, Brito M, Fiege D (2015a) Familia Aphroditidae Lamarck, 1818. Annelida Polychaeta IV. In: Parapar J, Moreira J, Núñez J, Barnich R, Brito M del C, Fiege D, Capaccioni-Azzati R, El-Haddad M, Fauna Iberica, Vol. 41. Ramos MA et al (eds) Museo Nacional de Ciencias Naturales. CSIC. Madrid, p 87–103Google Scholar
- Núñez J, Barnich R, Brito M, Fiege D (2015b) Familia Polynoidae Kinberg, 1855. Annelida Polychaeta IV. In: Parapar J, Moreira J, Núñez J, Barnich R, Brito M del C, Fiege D, Capaccioni-Azzati R, El-Haddad M, Fauna Iberica, Vol. 41. Ramos, M.A. et al. (eds) Museo Nacional de Ciencias Naturales. CSIC. Madrid, p 104–201Google Scholar
- O’Brien TD, Wiebe PH, Falkenhaug T (eds). (2013) ICES Zooplankton Status Report 2010/2011. ICES Cooperative Research Report No. 318. 208 pp.Google Scholar
- Ostmann A, Nordhaus I, Sørensen MV (2012) First recording of kinorhynchs from java, with the description of a new brackish water species from a mangrove-fringed lagoon. Mar Biodivers 42:79–91CrossRefGoogle Scholar
- Palla R (2016) Valdivia. Die Geschichte der ersten deutschen Tiefsee-Expedition. Galiani, BerlinGoogle Scholar
- Purkey SG, Johnson GC (2012) Global contraction of Antarctic bottom water between the 1980s and 2000s. J Clim 25:5830–5844CrossRefGoogle Scholar
- Ramey-Balci PA, Fiege D, Purschke G (2013) Polygordiidae Czerniavsky, 1881. Annelida: Polychaetes. In: Westheide W, Purschke G (eds) Handbook of zoology online. De Gruyter, Berlin, 10 p. http://www.degruyter.com/view/Zoology/bp_029147-6_7
- Randall JE, Bogorodsky S, Krupp F (in press) Coastal Fishes of the Red Sea. Fauna of Arabia 26Google Scholar
- Reineck H-E, Singh IB (1973) Depositional sedimentary environments. Springer, Berlin-Heidelberg-New York 439 pp CrossRefGoogle Scholar
- Renz J, Markhaseva EL (2015) First insights into genus level diversity and biogeography of deep sea benthopelagic calanoid copepods in the South Atlantic and Southern Ocean. Deep-Sea Res I 105:96–110CrossRefGoogle Scholar
- Reuscher M, Fiege D, Imajima M (2015a) Ampharetidae (Annelida: Polychaeta) from Japan. Part III: the genus Amphicteis Grube, 1850 and closely related genera. J Mar Biol Assoc UK 95:929–940CrossRefGoogle Scholar
- Reuscher M, Fiege D, Imajima M (2015b) Ampharetidae (Annelida: Polychaeta) from Japan. Part IV. Miscellaneous genera. J Mar Biol Assoc UK 95:1105–1125CrossRefGoogle Scholar
- Richter G (1961) Die Radula der Atlantiden (Heteropoda, Prosobranchia) und ihre Bedeutung für die Systematik und Evolution der Familie. Zeitschrift für Morphologie und Ökologie der Tire 50(2):163–238CrossRefGoogle Scholar
- Richter G, Thorson G (1975) Pelagische Prosobranchier-Larven des Golfs von Neapel. Ophelia 13:109–185CrossRefGoogle Scholar
- Richter G (1974) Die Heteropoden der “Meteor”-Expedition in den Indischen Ozean 1964/65. “Meteor” Forschungs-Ergebnisse (D) 17:55–78Google Scholar
- Richter G (1993) Zur Kenntnis der Gattung Atlanta (V). Die Atlanta peroni-Gruppe und Atlanta gaudichaudi (Prosobranchia: Heteropoda). Arch Moll 122:189–205Google Scholar
- Riehl T, Lins, Brandt A (2017 online) The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae). Deep-Sea Res II Top Stud Oceanogr [online] https://doi.org/10.1016/j.dsr2.2017.10.005
- Rothe BH, Schmidt-Rhaesa A, Kieneke A (2011) The nervous system of Neodasys chaetonotoideus (Gastrotricha: Neodasys) revealed by combining confocal laserscanning and transmission electron microscopy – evolutionary comparison of neuroanatomy within the Gastrotricha and basal Protostomia. Zoomorphology 130:51–84CrossRefGoogle Scholar
- Runge J (ed.) (2015) Arktis bis Afrika : 150 Jahre wissenschaftliche Geographie in Deutschland. Frankfurter geographische Hefte 70: 1–211. Frankfurter Geographischen GesellschaftGoogle Scholar
- Rüppell E (1828–1830) Atlas zu der Reise im nördlichen Afrika. Fische des rothen Meeres. Frankfurt am MainGoogle Scholar
- Rüppell E (1830) Beschreibung und Abbildung von 24 Arten kurzschwänzigen Krabben, als Beitrag zur Naturgeschichte des rothen Meeres. H.L. Brönner, Frankfurt am MainGoogle Scholar
- Rüppell E (1834) Description of a new genus of pectinibranchiated gastreropodous Mollusca (Leptoconchus). Proc Zool Soc London 2:105–106CrossRefGoogle Scholar
- Rüppell E (1835–1838) Neue Wirbelthiere zu der Fauna von Abyssinien gehörig. Frankfurt a.M.Google Scholar
- Rüppell E (1844) Intorno ad alcuni Cefalopodi del mare di Messina. Letterea del Dr. Eduardo Rüppell di Frankfort sul Meno al Prof. Anastasio Cocco. Giornale del Gabinetto di Messina 26:1–7Google Scholar
- Rüppell E, Leuckart FS (1828-1830) Neue wirbellose Thiere des Rothen Meeres. In: Atlas zu der Reise im nördlichen Afrika. 1. Abt. Zoologie: 47 ppGoogle Scholar
- Sakurai A (2013) Science and societies in Frankfurt am Main. Pickering & Chatto, LondonGoogle Scholar
- Sanders HL (1958) Benthic studies in Bussards Bay. 1. Animal-sediment relationships. Limnol Oceanogr 3:245–258CrossRefGoogle Scholar
- Schäfer W (1962) Aktuo-Paläontologie nach Studien in der Nordsee. Waldemar Kramer, Frankfurt am MainGoogle Scholar
- Schäfer W, Kramer W (1967) Geschichte des Senckenberg-Museums im Grundriss, Chronik der Senckenbergischen Naturforschenden Gesellschaft 1817–1966. Senckenberg-Buch 46. Waldemar Kramer, Frankfurt am MainGoogle Scholar
- Schückel U, Kröncke I (2013) Temporal changes in intertidal macrofauna communities over eight decades: a result of eutrophication and climate change. Estuar Coast Shelf Sci 117:210–218CrossRefGoogle Scholar
- Singer A, Staneva J, Millat G, Kröncke I (2016) Modelling benthic macrofauna and seagrass distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental scenarios. Estuar Coast Shelf Sci 188:99–108CrossRefGoogle Scholar
- Sonnewald M, Apel M (2016) In remembrance of Michael Türkay (3 April 1948-9 September 2015), a tower of strength in the world of crustaceans. J Crustac Biol 36:106–117. https://doi.org/10.1163/1937240X-00002400 CrossRefGoogle Scholar
- Sonnewald M, Türkay M (2010) Die Biodiversität des Epibenthos der Doggerbank (Nordsee). Ein Langzeitvergleich unter Einbeziehung von Umweltdaten. In: Epple C, Korn H, Kraus K, Stadler J (eds) Biologische Vielfalt und Klimawandel, Tagungsband mit den Beiträgen der 2. BfN-Forschungskonferenz, 2. – 3. März 2010, Bonn. BfN-Skripten, 274:80Google Scholar
- Sonnewald M, Türkay M (2012a) The megaepifauna of the Dogger Bank (North Sea) species composition and faunal characteristics 1991–2008. Helgol Mar Res 66:63–75CrossRefGoogle Scholar
- Sonnewald M, Türkay M (2012b) Abundance analyses of mega-epibenthic species on the Dogger Bank (North Sea). Diurnal rhythms and short-term effects caused by repeated trawling, observed at a permanent station. J Sea Res 73:1–6CrossRefGoogle Scholar
- Sonnewald M, Türkay M (2012c) Environmental influence on the bottom and near-bottom megafauna communities of the Dogger Bank: a long-term survey. Helgol Mar Res 66:503–511CrossRefGoogle Scholar
- Spencer Jones M, Scholz J, Grischenko AV, Fujita T (2011) Japanese bryozoans from the Meiji era at the Natural History Museum, London, part 1: the Mitsukuri and Owston collections. Ann Bryozool 3:143–157Google Scholar
- Stuckas H, Knöbel L, Schade H, Breusing C, Hinrichsen HH, Bartel M, Langguth C, Melzner F (2017) Combining hydrodynamic modelling with geneticvs: can passive larval drift shape the genetic structure of Baltic Mytilus populations? Mol Ecol 26:2765–2782PubMedCrossRefGoogle Scholar
- Türkay M (1974) Dr. Richard Bott (1902-1974). Nat Mus 104:135–136Google Scholar
- Türkay M (1975) Dr. phil. nat. Richard Bott (1902-1974) Leben und carcinologisches Werk. Crustaceana 28:298–302CrossRefGoogle Scholar
- Türkay M (1986) Crustacea Decapoda Reptantia der Tiefsee des Roten Meeres. Senckenbergiana Marit 18:123–185Google Scholar
- Türkay M (1991) Forschungsreise zur Doggerbank. Globus 1991:229–233Google Scholar
- Türkay M (1992) Forschungsreise zur Doggerbank. Nat Mus 122:323Google Scholar
- Türkay M, Kröncke I (2004) Eine Insel unter Wasser: Die Doggerbank. Nat Mus 134:261–277Google Scholar
- Türkay M, Allspach A, Menner M (2011) Senckenbergisches Sammlungsverwaltungssystem, SeSam. Senckenbergische Naturforschende Gesellschaft, Frankfurt, Germany. Senckenberg Nat Forsch Mus 141Google Scholar
- Vanreusel A, Hilario A, Ribeiro PA, Menot L, Martinez Arbizu P (2016) Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci Rep 6:26808PubMedPubMedCentralCrossRefGoogle Scholar
- Veit-Köhler G (2004) Kliopsyllus andeep sp. n. (Copepoda: Harpacticoida) from the Antarctic deep sea – a copepod closely related to certain shallow-water species. Deep-Sea Res II 51:169–1641Google Scholar
- Veit-Köhler G, Guilini K, Peeken I, Quillfeldt P, Mayr C (2013) Carbon and nitrogen stable isotope signatures of deep-sea meiofauna follow oceanographical gradients across the Southern Ocean. Prog Oceanogr 110:69–79CrossRefGoogle Scholar
- Voigt E (1924) Beiträge zur Kenntnis der Bryozoenfauna der subherzynen Kreidemulde. Paläontol Z 6:93–173CrossRefGoogle Scholar
- Wehe T (2006) Revision of the scale worms (Polychaeta: Aphroditoidea) occurring in the seas surrounding the Arabian peninsula. Part I: Polynoidae. Fauna of Arabia 22:23–197Google Scholar
- Wehe T (2007) Revision of the scale worms (Polychaeta: Aphroditoidea) occurring in the seas surrounding the Arabian peninsula. Part II Sigalionidae. Fauna of Arabia 23:41–124Google Scholar
- Weinert M, Kröncke I, Mathis M, Neumann H, Pohlmann T, Reiss H (2016) Modelling climate change effects on benthos: distributional shifts in the North Sea from 2001 to 2099. Estuar Coast Shelf Sci 175:157–168CrossRefGoogle Scholar
- Wen J, Ickert-Bond SM, Appelhans MS, Dorr LJ, Funk VA (2015) Collections-based systematics: opportunities and outlook for 2050. J Syst Evol 53:477–488CrossRefGoogle Scholar
- Wenz W (1938-1944) Gastropoda. In: Handbuch der Paläozoologie, 6. I (Prosobranchia). Bornträger, BerlinGoogle Scholar
- Zajonz U, Lavergne E, Klaus R, Krupp F, Sheikh MA, Naseeb FS (2016) The coastal fishes and fisheries of the Socotra archipelago, Yemen. Mar Poll Bull 105:660–675. https://doi.org/10.1016/j.marpolbul.2015.11.025 CrossRefGoogle Scholar
- Zilch A (1959-1960) Gastropoda. Fortsetzung von W. Wenz. In: Handbuch der Paläozoologie 6. II (Euthyneura). Bornträger, BerlinGoogle Scholar
- Zinßmeister C, Wilke T, Hoppenrath M (2017) Species diversity of dinophysoid dinoflagellates of the clarion Clipperton fracture zone. Mar Biodivers 47:271–287CrossRefGoogle Scholar