Advertisement

Marine Biodiversity

, Volume 48, Issue 1, pp 159–178 | Cite as

200 years of marine research at Senckenberg: selected highlights

  • A. Brandt
  • J. Scholz
  • A. Allspach
  • N. Brenke
  • S. Brix
  • K. H. George
  • T. Hörnschemeyer
  • S. Holst
  • M. Hoppenrath
  • F. Iwan
  • A. Janssen
  • R. Janssen
  • D. Janussen
  • K. Jeskulke
  • D. Fiege
  • S. Kaiser
  • A. Kieneke
  • T. C. Kihara
  • I. Kröncke
  • F. Krupp
  • S. O. Martha
  • P. M. Martínez Arbizu
  • K. Meißner
  • M. Miljutina
  • D. Miljutin
  • J. Renz
  • T. Riehl
  • H. Saeedi
  • V. Siegler
  • M. Sonnewald
  • H. Stuckas
  • G. Veit-Köhler
Review

Abstract

A history of the Marine Zoology Department at the Senckenberg Society for the Study of Nature (Senckenbergische Naturforschende Gesellschaft) has not yet been published. Still, there is no lack of documentation of research activities at the Senckenberg Research Institute and Natural History Museum. Marine zoology studies began with Eduard Rüppell (1794–1884) after his admission to the Senckenberg Society in 1818, one year after its foundation, and his collections of fishes, molluscans and crustaceans from the Mediterranean made in 1820. During the nineteenth century, further progress in marine zoology studies was slow and serious interest in the study of marine organisms expanded significantly only during the twentieth century after the foundation of the marine station at Wilhelmshaven in 1928. The amount of marine biology and geology literature originating from researchers associated with the Senckenberg has become overwhelming and the dwarfs once standing on the shoulder of giants have become giants themselves. In this article, we present the Marine Zoology Department, its sections and assess the most important researchers associated with the Senckenberg Research Institute including the founders of the sections and their place in two centuries of history since the foundation of the Senckenberg Society in 1817.

Keywords

Senckenberg history marine research expeditions 

Notes

Acknowledgements

Natascha Sharon Pontius (Frankfurt am Main, Germany) is thanked for help with improving the language. For useful comments and for improving the manuscript, we would also like to thank Priska Schäfer (Kiel, Germany).

Compliance with ethical standards

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Field study

Not applicable.

Registration of new species, scientific names, and genetic/genomic data

Not applicable.

Supplementary material

12526_2017_839_MOESM1_ESM.xlsx (13 kb)
Supplementary Table 1 Major marine expeditions conducted by staff of the DZMB. (XLSX 13 kb)
12526_2017_839_MOESM2_ESM.xlsx (16 kb)
Supplementary Table 2 Samples and specimens processed by the DZMB. (XLSX 16 kb)

References

  1. Adl SM, Simpson AGB, Lane CE, Lukes J, Bass D, Bowser SS, Brown MW, Burki F, Dunthorn M, Hampl V, Heiss A, Hoppenrath M, Lara E, Gall LL, Lynn DH, McMantus H, Mitchell EAD, Mozley-Stanridge SE, Parfrey LW, Pawlowski J, Rueckert S, Shadwick L, Schoch CL, Smirnov A, Spiegel FW (2012) The revised classification of eukaryotes. J Eukaryot Microbiol 59:429–493PubMedPubMedCentralGoogle Scholar
  2. Barnich R, Fiege D (2000) Borstenwürmer. Schillernde Bewohner der Meere Kl Senckenberg-Reihe Nr 37:64 pGoogle Scholar
  3. Barnich R, Fiege D (2003) The Aphroditoidea (Annelida: Polychaeta) of the Mediterranean Sea. Abh Senckenb Naturforsch Ges 559:1–167Google Scholar
  4. Barnich R, Fiege D (2009) Revision of the genus Harmothoe Kinberg, 1856 (Polychaeta: Polynoidae) in the Northeast Atlantic. Zootaxa 2104:1–76Google Scholar
  5. Bartsch I (2003) Lohmannellinae (Halacaridae: Acari) from the great meteor seamount (northeastern Atlantic) description of new species and reflections on the origin of the seamount fauna. Mitt Hamb Zool Mus Inst 100:101–117Google Scholar
  6. Bartsch I (2004) Halacaridae (Acari) from the great meteor seamount (northeastern Atlantic). Description of Simognathus species. Mitt Hamb Zool Mus Inst 101:185–196Google Scholar
  7. Benedix G, Jacob DE, Lotz BH, Martha SO, Matsuyama K, Morales LFG, Neu C, Scholz J (2016) Bryozoen als Architekten. Wissenschaftler entschlüsseln die Choreografie aufeinanderfolgender Generationen mit moderner Technik. Senckenberg Nat Forsch Mus 146:14–19Google Scholar
  8. Berger F (2007) Frankfurt und der Nordpol. Schriften des Historischen Museums Frankfurt am Main 26:1–216Google Scholar
  9. Bitschofsky F (2013) Distribution over space and time in Epizoobiontic North Sea bryozoans. Lecture Notes in Earth System Sciences 143:1–12Google Scholar
  10. Bitschofsky F, Forster S, Scholz J (2011) Regional and temporal changes in epizoobiontic bryozoan-communities of Flustra foliacea (Linnaeus, 1758) and implications for North Sea ecology. Estuar Coast Shelf Sci 91:423–433Google Scholar
  11. Boersma M, Wiltshire KH, Kong SM, Greve W, Renz J (2015) Long-term change in the copepod community in the southern German bight. J Sea Res 101:41–50Google Scholar
  12. Boettger CR (1915) Die von Dr. Merton auf den Aru- und Kei-Inseln gesammelten Wassermollusken. Abh Senckenb Naturforsch Ges 35:125–145Google Scholar
  13. Boettger CR (1916) Die Molluskenausbeute der Hanseatischen Südsee-Expedition 1909. Abh Senckenb Naturforsch Ges 36:287–308Google Scholar
  14. Boettger O (1887) Die ostasiatischen Vertreter der Gattung Rissoina I. Jahrbücher der deutschen malakozologischen Gesellschaft 14:125–135Google Scholar
  15. Boettger O (1893) Die marinen Mollusken der Philippinen, nach den Sammlungen des Herrn José Florencio Quadras in Manila (I-III). Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 25: 97–115, 153–167, 185–193Google Scholar
  16. Boettger O (1895) Die marinen Mollusken der Philippinen, nach den Sammlungen des Herrn José Florencio Quadras in Manila (IV). Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 27(1–20):41–63Google Scholar
  17. Boettger O (1896) Die marinen Mollusken der Philippinen, nach den Sammlungen des Herrn José Florencio Quadras in Manila (V). Nachrichtsblatt der deutschen malakozoologischen Gesellschaft 28:41–56Google Scholar
  18. Böggemann M (2002) Revision of the Glyceridae GRUBE 1850 (Annelida: Polychaeta). Abhandlungen der Senckenbergischen Naturforschenden Gesellschaft Frankfurt am Main 555:1–249Google Scholar
  19. Bott R (1955) Die Süßwasserkrabben von Afrika (Crust., Decap.) und ihre Stammesgeschichte. Annales du Musée Royal du Congo Belge. C Zool Série III 1:209–352Google Scholar
  20. Brandt A, Frutos I, Bober S, Brix S, Brenke N, Guggolz T, Heitland N, Malyutina M, Minzlaff U, Riehl T, Schwabe E, Zinkann A-C, Linse K (2017) Composition of abyssal macrofauna along the Vema fracture zone and the hadal Puerto Rico trench, northern tropical Atlantic. Deep Sea Res II.  https://doi.org/10.1016/j.dsr2.2017.07.014
  21. Brandt A, Gooday AJ, Brix SB, Brökeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe J, Janussen D, Kaiser S, Linse K, Malyutina M, Brandao S, Pawlowski J, Raupach M (2007) The Southern Ocean deep sea: first insights into biodiversity and biogeography. Nature 447:307–311PubMedGoogle Scholar
  22. Brandt A, Gutt J, Hildebrandt M, Pawlowski J, Schwendner J, Soltwedel T, Thomsen L (2016) Cutting the umbilical - new technological perspectives in benthic deep-sea research. Journal of Marine Systems and Engineering 4:36.  https://doi.org/10.3390/jmse4020036 Google Scholar
  23. Brenke N, Fanenbruck M, George KH (2017) A new parasitic deep-sea copepod from the Angola Basin (southeast Atlantic Ocean) Abyssotaurus vermiambatus gen. Et sp. nov. (Copepoda: Cyclopoida: Serpulidicolidae stock, 1979), with remarks on serpulidicolid systematics and a key to the species. Mar Biodivers.  https://doi.org/10.1007/s12526-017-0724-1
  24. Brix S, Leese F, Riehl T, Kihara TC (2014a) A new genus and new species of Desmosomatidae Sars, 1897 (isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. Mar Biodivers.  https://doi.org/10.1007/s12526-014-0218-3
  25. Brix S, Meißner K, Stransky B, Halanych KM, Jennings RM, Kocot KM, Svavarsson J (2014b) The IceAGE project – a followup of BIOICE. Polish Polar Res 35:141–150Google Scholar
  26. Brix S, Leese F, Riehl T, Kihara TC (2015) A new genus and new species of Desmosomatidae Sars, 1897 (isopoda) from the eastern South Atlantic abyss described by means of integrative taxonomy. Mar Biodivers 45:7–61Google Scholar
  27. Brown A, Thatje S (2015) The effects of changing climate on faunal depth distributions determine winners and losers. Glob Chang Biol 21:173–180PubMedGoogle Scholar
  28. Bruce NL, Brix S, Balfour N, Kihara TC, Weigand AM, Mehterian S, Iliffe TM (2017) A new genus for Cirolana troglexuma Botosaneanu & Iliffe, 1997, an anchialine cave dwelling cirolanid isopod (Crustacea, isopoda, Cirolanidae) from the Bahamas. Subterranean Biol 21:57–92Google Scholar
  29. Burrell AS, Disotell TR, Bergey CM (2015) The use of museum specimens with high-throughput DNA sequencers. J Human Evol 79:35–44Google Scholar
  30. Candás M, Martínez Arbizu P, Urgorri V (2013) A new species of Leptopontiidae Lang, 1948 (Copepoda: Harpacticoida) from the Ría de Ferrol (north-west Iberian peninsula). J Nat Hist 47:409–425Google Scholar
  31. Collins M, Knutti R, Arblaster J, Dufresne J-L, Fichefet T, Friedlingstein P, Gao X, Gutowski WJ, Johns T, Krinner G (2013) Long-term climate change: projections, commitments and irreversibility. In: Stocker DTQ, Plattner GK, Tignor M, Allen SK, Boschung J, Nauels A, Xia Y, Bex V, Midgley PM (eds) Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, p 1029–1136. http://pure.iiasa.ac.at/10551/ Accessed 31 August 2017
  32. Cosel RV (1982) Ergebnisse deutsch-portugiesischer Sammelreisen auf den Kapverdischen Inseln (República de Cabo Verde). Vorläufige Liste der marinen Mollusken – Courier Forschungs-Institut Senckenberg 52:15–25Google Scholar
  33. Deutsch C, Ferrel A, Seibel B, Pörtner H-O, Huey RB (2015) Climate change tightens a metabolic constraint on marine habitats. Science 348(6239):1132–1135PubMedGoogle Scholar
  34. Dörjes J (1992a) Langfristige Veränderungen des Artenbestandes der Makroendofauna im Vorstrand der Düneninsel Norderney in der Zeit von 1976 bis 1988 (Nordsee). Senckenbergiana marit. 22:11–19Google Scholar
  35. Dörjes J (1992b) Langzeitentwicklung makrobenthischer Tierarten im Jadebusen (Nordsee) während der Jahre 1974–1987. Senckenberg Marit 22:37–57Google Scholar
  36. Dörjes J, Michaelis H, Rhode B (1986) Long-term studies of macro-zoobenthos in the intertidal and shallow subtidal habitats near the island of Norderney (east Frisian coast, Germany). Hydrobiol 142:217–232Google Scholar
  37. Dunker WBRH (1859) Neue japanische Mollusken. Malakozoologische Blätter 6:221–240Google Scholar
  38. Dunker WBRH (1861) Mollusca Japonica. Schweitzerbart, StuttgartGoogle Scholar
  39. Faulwetter S, Vasileiadou A, Kouratoras M, Dailianis T, Arvanitidis C (2013) Micro-computed tomography: introducing new dimensions to taxonomy. ZooKeys 263:1–45Google Scholar
  40. Fedorov PV, Koromyslova AV, Martha SO (2017) The oldest bryozoans of Baltoscandia from the lowermost Floian (Ordovician) of north-western Russia: two new rare, small and simple species of Revalotrypidae. PalZ 91:353–373Google Scholar
  41. Fernández R, Kvist S, Lenihan J, Giribet G, Ziegler A (2014) Sine Systemate chaos? A versatile tool for earthworm taxonomy: non-destructive imaging of freshly fixed and museum specimens using micro-computed tomography. PLoS One 9(5):e96617PubMedPubMedCentralGoogle Scholar
  42. Fiege D (2016) Sternaspidae Carus, 1863. In: Westheide W, Purschke G (eds) Handbook of Zoology Online. Annelida: Polychaetes. De Gruyter, Berlin, 17 pp. http://www.degruyter.com/view/Zoology/bp_029147-6_53
  43. Fiege D, Ramey P, Ebbe B (2010) Diversity and distributional patterns of Polychaeta in the deep South Atlantic. Deep-Sea Res I 57:1329–1344Google Scholar
  44. George KH (2013) Faunistic research on metazoan meiofauna from seamounts – a review. Meiofauna Marina 20:1–32Google Scholar
  45. George KH (2017) Phylogeny of the taxon Paralaophontodes Lang (Copepoda, Harpacticoida, Laophontodinae), including species descriptions, chorological remarks, and a key to species. Zoosystematics Evol 93:211–241Google Scholar
  46. George KH, Brökeland W (2009) Deep-sea taxonomy – a contribution to our knowledge of biodiversity. Zootaxa 2096:1–488Google Scholar
  47. George KH, Gheerardyn H (2015) Remarks on the genus Laophontodes T. Scott, 1894 (Copepoda, Harpacticoida, Ancorabolidae, Laophontodinae), including the (re-) description of four species. Zool Anz 259:61–96Google Scholar
  48. George KH, Veit-Köhler G, Martínez Arbizu P, Seifried S, Rose A, Willen E, Bröhldick K, Corgisinho PH, Drewes J, Menzel L, Moura G, Schminke KH (2014) Community structure and species diversity of Harpacticoida (Crustacea: Copepoda) at two sites in the deep sea of the Angola Basin (Southeast Atlantic). Org Divers Evol 14:57–73Google Scholar
  49. George KH, Veit-Köhler G, Martínez Arbizu PM (2016) Das Deutsche Zentrum für marine Biodiversitätsforschung. Senckenberg Nat Forsch Mus 146:26–33Google Scholar
  50. Gerdes G, Kadagies N, Kaselowsky J, Lauer A, Scholz J (2005) Bryozoans and microbial communities of cool-temperate and subtropical latitudes – Paleoecological implications part II. Diversity of microbial fouling on laminar shallow marine bryozoans of Japan and New Zealand. Facies 50:363–389Google Scholar
  51. Gheerardyn H, Veit-Köhler G (2009) Diversity and large-scale biogeography of Paramesochridae (Copepoda, Harpacticoida) in South Atlantic abyssal plains and the deep Southern Ocean. Deep Sea Res I 56:1804–1815Google Scholar
  52. Göcke C, Janussen (2013) Sponge assemblages of the deep Weddel Sea: ecological and zoogeographic results of the ANDERP I-III and SYSTCO expeditions. Polar Biol 36(7):1059–1068Google Scholar
  53. Gollner S, Stuckas H, Kihara TC, Khodami S, Martinez Arbizu P (2016) Mitochondrial DNA analyses indicate high diversity, expansive population growth and high genetic connectivity of vent copepods (Dirivultidae) across different oceans. PLoS One 11(10).  https://doi.org/10.1371/journal.pone.0163776
  54. Gollner S, Kaiser S, Menzel L, Jones DOB, van Oevelen D, Menot L, Colaço AM, Brown A, Canals M, Cuvelier D, Durden JM, Gebruk A, Aruoriwo EG, Haeckel M, Mestre NC, Mevenkamp L, Morato T, Pham CK, Purser A, Sanchez-Vidal A, Vanreusel A, Vink A, Martinez Arbizu P (2017) Resilience of benthic deep-sea fauna to mineral mining activities. MERE 129:76–101Google Scholar
  55. Graham CH, Ferrier S, Huettman F, Moritz C, Peterson AT (2004) New developments in museum-based informatics and applications in biodiversity analysis. Trends Ecol Evol 19:497–503PubMedGoogle Scholar
  56. Greve W, Reiners F, Nast J, Hoffmann S (2004) Helgoland roads meso- and macrozooplankton time-series 1974 to 2004: lessons from 30 years of single spot, high frequency sampling at the only off-shore island of the North Sea. Helgol Mar Res 58:274–288Google Scholar
  57. Gutperlet R, Capperucci RM, Bartholomä A, Kröncke I (2016) Relationships between spatial patterns of macrofauna communities, sediments and hydroacoustic backscatter data in a highly heterogeneous and human disturbed environment. J Sea Res 121:33–46Google Scholar
  58. Hochberg R, Atherton S, Kieneke A (2014) Marine Gastrotricha of little Cayman Island with the description of one new species and an initial assessment of meiofaunal diversity. Mar Biodivers 44:89–113Google Scholar
  59. Hofmann T, Raupach MJ, Martínez Arbizu P, Knebelsberger T (2015) An application of in situ hybridization for the identification of commercially important fish species. Fish Res 170:1–8Google Scholar
  60. Holler P, Markert E, Bartholomä A, Capperucci R, Hass H-C, Kröncke I, Mielck F, Reimers H-C (2017) Tools to evaluate seafloor integrity: comparison of multi-device acoustic seafloor classifications for benthic macrofauna-driven patterns in the German bight, southern north. Geo-Mar Lett 37:93–109Google Scholar
  61. Holst S, Laakmann S (2014) Morphological and molecular discrimination of two closely related jellyfish species, Cyanea capillata and C. lamarckii (Cnidaria, Scyphozoa), from the northeast Atlantic. J Plankton Res 36:48–63Google Scholar
  62. Holst S, Michalik P, Noske M, Krieger J, Sötje I (2016) Potential of X-ray micro-computed tomography for soft-bodied and gelatinous cnidarians with special emphasis on scyphozoan and cubozoan statoliths. J Plankton Res 38:1225–1242Google Scholar
  63. Hoppenrath M (2017) Dinoflagellate taxonomy – a review and proposal of a revised classification. Mar Biodivers 47:381–403Google Scholar
  64. Hoppenrath M, Murray S, Chomérat N, Horiguchi T (2014) Marine benthic dinoflagellates - unveiling their worldwide biodiversity. Kleine Senckenberg-Reihe 54:276Google Scholar
  65. Hoppenrath M, Yubuki N, Stern R, Leander BS (2017) Ultrastructure and molecular phylogenetic position of a new marine sand-dwelling dinoflagellate from British Columbia, Canada: Pseudadenoides polypyrenoides sp. nov. (Dinophyceae). Eur J Phycol 52:208–224 http://ipt.vliz.be/eurobis/resource?r=sesam Google Scholar
  66. Imajima M, Reuscher M, Fiege D (2012) Ampharetidae (Annelida: Polychaeta) from Japan. Part I: the genus Ampharete Malmgren, 1866, along with a discussion of several taxonomic characters of the family and the introduction of a new identification tool. Zootaxa 3490:75–88Google Scholar
  67. Imajima M, Reuscher M, Fiege D (2013) Ampharetidae (Annelida: Polychaeta) from Japan. Part II: genera with elevated and modified notopodia. Zootaxa 3647:137–166PubMedGoogle Scholar
  68. Janssen A, Kaiser S, Meissner K, Brenke N, Menot L, Martínez Arbizu P (2015) A reverse taxonomic approach to assess macrofaunal distribution patterns in abyssal Pacific polymetallic nodule fields. PLoS One 10(2):e0117790PubMedPubMedCentralGoogle Scholar
  69. Janssen R, Taviani M (2015) Taxonomic, ecological and historical considerations on the deep-water benthic mollusc Fauna of the Red Sea. In: Rasul NMA, Stewart ICF (eds) The Red Sea. Springer, Berlin, Heidelberg, pp 511, 638 pp–529Google Scholar
  70. Janssen R (1993) Die Typen und Typoide des Natur-Museums Senckenberg, 81. Die Typen der von Dunker 1860/1861 beschriebenen japanischen Meeresmollusken. Archiv für Molluskenkunde 122 (Zilch-Festschrift) 403–435Google Scholar
  71. Kaselowsky J (2004) Taxonomie und Wuchsformen laminar-inkrustierender Bryozoen aus Japan und Neuseeland im latitudinalen Vergleich. PhD thesis, Ruprecht-Karls-Universität Heidelberg. 154 ppGoogle Scholar
  72. Kaselowsky J., Scholz J., Mawatari SF, Probert K., Gerdes G., Kadagies N., Hillmer G (2005) Bryozoans and Microbial Communities of Cool-Temperate and Subtropical Latitudes - Paleoecological Implications. I. Growth morphologies of shallow-water bryozoans settling on bivalve shells (Japan and New Zealand). Facies 50: 349–361. Berlin, Heidelberg (Springer)Google Scholar
  73. Kaiser S, Brix S, Kihara TC, Janssen A, Jennings RM (2017) Integrative species delimitation in the deep-sea genus Thaumastosoma Hessler, 1970 (Isopoda, Asellota, Nannoniscidae) reveals a new genus and species from the Atlantic and central Pacific abyss. Deep-Sea Research II, in pressGoogle Scholar
  74. Kemp C (2015) The endangered dead. Nature 518:293Google Scholar
  75. Kieneke A, Nikoukar H (2017) Integrative morphological and molecular investigation of Turbanella hyalina Schultze, 1853 (Gastrotricha: Macrodasyida), including a redescription of the species. Zool Anz 267:168–186Google Scholar
  76. Kieneke A, Schmidt-Rhaesa A, Hochberg R (2015) A new species of Cephalodasys (Gastrotricha, Macrodasyida) from the Caribbean Sea with a determination key to species of the genus. Zootaxa 3947:367–385PubMedGoogle Scholar
  77. Klausewitz W (2009) Ein Zeitzeuge berichtet: Mit Hans Hass auf der Xarifa. Nat Mus 139:114–117Google Scholar
  78. Kobelt W (1883–1908) Iconographie der schalentragenden europäischen Meeresconchylien. 1: 171 pp. (1883–1887); 2: 139 pp. (1888–1901); 3: 406 pp. (1902–1905); 4: 172 pp. (1906–1908). Cassel (Th. Fischer)Google Scholar
  79. Kobelt W (1886–1888) Prodromus faunae molluscorum testaceorum maria europaea inhabitantium. 550 pp. Nürnberg (Bauer & Raspe)Google Scholar
  80. Kretzschmar AL, Verma A, Harwood T, Hoppenrath M, Murray SA (2017) Characterisation of Gambierdiscus lapillus sp. nov. (Gonyaulacales, Dinophyceae) a new toxic dinoflagellate from the great barrier reef (Australia). J Phycol 53:283–297PubMedGoogle Scholar
  81. Kröncke I (2011) Changes in Dogger Bank macrofauna communities in the 20th century caused by fishing and climate. Estuar Coast Shelf Sci 94:234–245Google Scholar
  82. Kröncke I, Reiss H, Dippner JW (2013a) Effects of cold winters and regime shifts on macrofauna communities in the southern North Sea. Estuar Coast Shelf Sci 119:79–90Google Scholar
  83. Kröncke I, Reiss H, Eggleton JD, Aldridge J, Bergman MJN, Cochrane S, Craeymeersch J, Degraer S, Desroy N, Dewarumez J-M, Duineveld G, Essink K, Hillewaert H, Lavaleye MSS, Moll A, Nehring S, Newell J, Oug E, Pohlmann T, Rachor E, Robertson M, Rumohr H, Schratzberger M, Smith R, Vanden Berghe E, van Dalfsen J, van Hoey G, Vincx M, Willems W, Rees HL (2011) Changes in North Sea macrofauna communities and species distribution between 1986 and 2000. Estuar Coast Shelf Sci 94:1–15Google Scholar
  84. Kröncke I, Reiss H, Türkay M (2013b) Macro- and megafauna communities in three deep basins of the south-East Atlantic. Deep Sea Res I 81:25–35Google Scholar
  85. Kröncke I, Türkay M (2003) Structure and function of the macrofauna communities in the deep Angola Basin in relation to environmental factors. Mar Ecol Prog Ser 260:43–53Google Scholar
  86. Kröncke I, Türkay M, Fiege D (2003) Macrofauna communities in the eastern Mediterranean deep-sea. PSZNI Mar Ecol 24:193–216Google Scholar
  87. Krupp F, Abuzinada AH, Nader IA (1996) A marine wildlife sanctuary for the Arabian gulf - environmental research and conservation following the 1991 gulf war oil spill. NCWCD & Senckenberg, Riyadh & FrankfurtGoogle Scholar
  88. Krylova EM, Janssen R (2006) Vesicomyidae from Edison seamount (south west Pacific: Papua New Guinea: New Ireland fore-arc basin) (Bivalvia: Glossoidea). Arch Molluskenkd 135:231–261Google Scholar
  89. Laakmann S, Gerdts G, Erler R, Knebelsberger T, Martínez Arbizu P, Raupach MJ (2013) Comparison of molecular species identification for North Sea calanoid copepods (Crustacea) using proteome fingerprints and DNA sequences. Mol Ecol Res 13:862–876Google Scholar
  90. Laakmann S, Holst S (2014) Emphasizing the diversity of North Sea hydromedusae by combined morphological and molecular methods. J Plankton Res 36:64–76Google Scholar
  91. Lehmacher C, Ramey-Balci P, Wolff L, Fiege D, Purschke G (2016) Ultrastructural differences in presumed photoreceptive organs and molecular data as a means for species discrimination in Polygordius (Annelida, Protodriliformia, Polygordiidae). Org Divers Evol 16:559–576Google Scholar
  92. Markhaseva EL, Schulz K, Martínez Arbizu P (2008) New family and genus Rostrocalanus gen. nov. (Crustacea: Calanoida: Rostrocalanidae fam. nov.) from deep Atlantic waters. J Nat Hist 42:2417–2441Google Scholar
  93. Martha SO (2014) Things we lost in the fire: the rediscovery of type material from Ehrhard Voigt's early publications (1923–1942) and the bryozoan collection of Hermann Brandes. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of Bryozoology 4: aspects of the history of research on bryozoans. International Bryozoology Association, Dublin, pp 107–127Google Scholar
  94. Martha SO, Afshar Y, Ostrovsky AN, Scholz J, Schwaha T, Wood TO (in press) “Variation of the tentacles in Paludicella”: the unfinished work of the German bryozoologist and embryologist Fritz Braem. In: Wyse Jackson PN, Spencer Jones ME (eds) Annals of Bryozoology 6: aspects of the history of research on bryozoans. International Bryozoology Association, DublinGoogle Scholar
  95. Martínez Arbizu P, Brix S (2008) Bringing light into deep sea biodiversity. Zootaxa 1866:1–574Google Scholar
  96. Martínez Arbizu P (2006) Phylogenetic relationships within Schminkepinellidae fam. N., a new monophyletic group of marine cyclopinids (Cyclopoida: Copepoda), description of two new genera and four new species. Zoologiya Bespozvonochnykh 3:185–207Google Scholar
  97. Martínez Arbizu P, Petrunina A (2017) Two new species of Tantulocarida from the Atlantic deep sea with first CLSM pictures of tantulus larva. Mar Biodivers, in pressGoogle Scholar
  98. McKinney FK, Jackson BCJ (1989) Bryozoan evolution. University of Chicago Press, Chicago, 252 ppGoogle Scholar
  99. Meißner K, Bick A, Götting M (2016) Arctic Pholoe (Polychaeta, Pholoidae) when integrative taxonomy helps to sort out barcodes. Zool J Linnean Soc.  https://doi.org/10.1111/zoj.12468
  100. Meißner K, Bick A, Guggolz T, Götting M (2014) Spionidae (Polychaeta: Canalipalpata: Spionida) from seamounts in the NE Atlantic. Zootaxa 3786:201–245PubMedGoogle Scholar
  101. Meißner K, Götting M (2015) Spionidae (‘Polychaeta’: Canalipalpata) from Lizard Island (great barrier reef, Australia) the genera Malacoceros, Scolelepis, Spio, Microspio, and Spiophanes. Zootaxa 4019:378–413PubMedGoogle Scholar
  102. Mertens R (1949) Eduard Rüppell. Leben und Werk eines Forschungsreisenden. Senckenberg-Buch 24, Waldemar Kramer, Frankfurt am MainGoogle Scholar
  103. Meyer J, Kröncke I, Bartholomä A, Dippner JW, Schückel U (2016) Long-term changes in species composition of demersal fish and epifauna species in the jade area (German Wadden Sea/ North Sea) since 1972. Estuar Coast Shelf Sci 181:284–293Google Scholar
  104. Michels J (2007) Confocal laser scanning microscopy: using cuticular autofluorescence for high resolution morphological imaging in small crustaceans. J Microsc 227:1–7PubMedGoogle Scholar
  105. Miljutina MA, Miljutin DM (2012) Seven new and four known species of the genus Acantholaimus (Nematoda: Chromadoridae) from the abyssal manganese nodule field (clarion-Clipperton fracture zone, north-eastern tropical Pacific). Helgol Mar Res 66:413–462Google Scholar
  106. Miljutina DM, Miljutin MA (2015) A revision of the genus Paracanthonchus (Cyatholaimidae, Nematoda) with a tabular key to species and a description of P. mamubiae sp. n. From the deep north-western Pacific. Deep Sea Res II 111:104–118Google Scholar
  107. Mohrbeck I, Martínez Arbizu P, Glatzel T (2010) Tantulocarida (Crustacea) from the Southern Ocean deep sea and the description of three new species of Tantulacus Huys, Andersen & Kristensen, 1992. Syst Parasitol 77:131–151PubMedGoogle Scholar
  108. Mohrbeck I, Raupach MJ, Martínez Arbizu P, Knebelsberger T, Laakmann S (2015) Quantity versus quality: high-throughput sequencing – the key to a rapid biodiversity assessment of marine Metazoa? PLoS One 10:e0140342PubMedPubMedCentralGoogle Scholar
  109. Mollenhauer D, Ziegler W (1992) Biographien bedeutender Senckenberger. In: 175 Jahre Senckenbergische Naturforschende Gesellschaft, Jubiläumsband I: 247–407. Senckenbergische Naturforschende Gesellschaft, Frankfurt am MainGoogle Scholar
  110. Mühlenhardt-Siegel U (2005a) Cumacea species (Crustacea: Peracarida) from the Deep-Sea expedition DIVA-1 with RV “meteor” to the Angola Basin in July 2000. Families Lampropidae, Bodotriidae. Org Divers Evol 5:113–130Google Scholar
  111. Mühlenhardt-Siegel U (2005b) Cumacea species (Crustacea: Peracarida) from the Deep-Sea expedition DIVA-1 with RV “meteor” to the Angola Basin in July 2000. Family Leuconidae. Org Divers Evol 5:131–149Google Scholar
  112. Mühlenhardt-Siegel U (2005c) Cumacea species (Crustacea: Peracarida) from the Deep-Sea expedition DIVA-1 with RV “meteor” to the Angola Basin in July 2000. Family Nannastacidae. Org Divers Evol 5:151–170Google Scholar
  113. Naderloo R, Apel M (2014) A new species of porcelain crab, Petrolisthes tuerkayi n. Sp. (Crustacea: Anomura: Porcellanidae), from the Persian Gulf. Zootaxa 3881:190–194.  https://doi.org/10.11646/zootaxa.3881.2.7 PubMedGoogle Scholar
  114. Naderloo R, Schubart CD (2010) Description of a new species of Parasesarma (Crustacea; Decapoda; Brachyura; Sesarmidae) from the Persian Gulf, based on morphological and genetic characteristics. Zool Anz 249:33–43.  https://doi.org/10.1016/j.jcz.2010.01.003 Google Scholar
  115. Naderloo R, Türkay M, Apel M (2011) Brachyuran crabs of the family Macrophthalmidae Dana, 1851 (Decapoda : Brachyura : Macrophthalmidae) of the Persian Gulf. Zootaxa 2911:1–42Google Scholar
  116. Naderloo R (2017) Atlas of crabs of the Persian Gulf. Spring 1–443Google Scholar
  117. Neumann H, de Boois I, Kröncke I, Reiss H (2013) Climate change facilitated range expansion of the non-native angular crab Goneplax rhomboides into the North Sea. Mar Ecol Prog Ser 484:143–153Google Scholar
  118. Neumann H, Diekmann R, Emeis K-C, Kleeberg U, Moll A, Kröncke I (2017) Full-coverage spatial distribution of epibenthic communities in the south-eastern North Sea in relation to habitat characteristics and fishing effort. Mar Environ Res in pressGoogle Scholar
  119. Neumann H, Diekmann R, Kröncke I (2016) The influence of habitat characteristics and fishing effort on functional composition of epifauna in the south-eastern North Sea. Estuar Coast Shelf Sci 169:182–194Google Scholar
  120. Núñez J, Barnich R, Brito M, Fiege D (2015a) Familia Aphroditidae Lamarck, 1818. Annelida Polychaeta IV. In: Parapar J, Moreira J, Núñez J, Barnich R, Brito M del C, Fiege D, Capaccioni-Azzati R, El-Haddad M, Fauna Iberica, Vol. 41. Ramos MA et al (eds) Museo Nacional de Ciencias Naturales. CSIC. Madrid, p 87–103Google Scholar
  121. Núñez J, Barnich R, Brito M, Fiege D (2015b) Familia Polynoidae Kinberg, 1855. Annelida Polychaeta IV. In: Parapar J, Moreira J, Núñez J, Barnich R, Brito M del C, Fiege D, Capaccioni-Azzati R, El-Haddad M, Fauna Iberica, Vol. 41. Ramos, M.A. et al. (eds) Museo Nacional de Ciencias Naturales. CSIC. Madrid, p 104–201Google Scholar
  122. O’Brien TD, Wiebe PH, Falkenhaug T (eds). (2013) ICES Zooplankton Status Report 2010/2011. ICES Cooperative Research Report No. 318. 208 pp.Google Scholar
  123. Ostmann A, Nordhaus I, Sørensen MV (2012) First recording of kinorhynchs from java, with the description of a new brackish water species from a mangrove-fringed lagoon. Mar Biodivers 42:79–91Google Scholar
  124. Palla R (2016) Valdivia. Die Geschichte der ersten deutschen Tiefsee-Expedition. Galiani, BerlinGoogle Scholar
  125. Purkey SG, Johnson GC (2012) Global contraction of Antarctic bottom water between the 1980s and 2000s. J Clim 25:5830–5844Google Scholar
  126. Ramey-Balci PA, Fiege D, Purschke G (2013) Polygordiidae Czerniavsky, 1881. Annelida: Polychaetes. In: Westheide W, Purschke G (eds) Handbook of zoology online. De Gruyter, Berlin, 10 p. http://www.degruyter.com/view/Zoology/bp_029147-6_7
  127. Randall JE, Bogorodsky S, Krupp F (in press) Coastal Fishes of the Red Sea. Fauna of Arabia 26Google Scholar
  128. Reineck H-E, Singh IB (1973) Depositional sedimentary environments. Springer, Berlin-Heidelberg-New York 439 pp Google Scholar
  129. Renz J, Markhaseva EL (2015) First insights into genus level diversity and biogeography of deep sea benthopelagic calanoid copepods in the South Atlantic and Southern Ocean. Deep-Sea Res I 105:96–110Google Scholar
  130. Reuscher M, Fiege D, Imajima M (2015a) Ampharetidae (Annelida: Polychaeta) from Japan. Part III: the genus Amphicteis Grube, 1850 and closely related genera. J Mar Biol Assoc UK 95:929–940Google Scholar
  131. Reuscher M, Fiege D, Imajima M (2015b) Ampharetidae (Annelida: Polychaeta) from Japan. Part IV. Miscellaneous genera. J Mar Biol Assoc UK 95:1105–1125Google Scholar
  132. Richter G (1961) Die Radula der Atlantiden (Heteropoda, Prosobranchia) und ihre Bedeutung für die Systematik und Evolution der Familie. Zeitschrift für Morphologie und Ökologie der Tire 50(2):163–238Google Scholar
  133. Richter G, Thorson G (1975) Pelagische Prosobranchier-Larven des Golfs von Neapel. Ophelia 13:109–185Google Scholar
  134. Richter G (1974) Die Heteropoden der “Meteor”-Expedition in den Indischen Ozean 1964/65. “Meteor” Forschungs-Ergebnisse (D) 17:55–78Google Scholar
  135. Richter G (1993) Zur Kenntnis der Gattung Atlanta (V). Die Atlanta peroni-Gruppe und Atlanta gaudichaudi (Prosobranchia: Heteropoda). Arch Moll 122:189–205Google Scholar
  136. Riehl T, Lins, Brandt A (2017 online) The effects of depth, distance, and the Mid-Atlantic Ridge on genetic differentiation of abyssal and hadal isopods (Macrostylidae). Deep-Sea Res II Top Stud Oceanogr [online]  https://doi.org/10.1016/j.dsr2.2017.10.005
  137. Rothe BH, Schmidt-Rhaesa A, Kieneke A (2011) The nervous system of Neodasys chaetonotoideus (Gastrotricha: Neodasys) revealed by combining confocal laserscanning and transmission electron microscopy – evolutionary comparison of neuroanatomy within the Gastrotricha and basal Protostomia. Zoomorphology 130:51–84Google Scholar
  138. Runge J (ed.) (2015) Arktis bis Afrika : 150 Jahre wissenschaftliche Geographie in Deutschland. Frankfurter geographische Hefte 70: 1–211. Frankfurter Geographischen GesellschaftGoogle Scholar
  139. Rüppell E (1828–1830) Atlas zu der Reise im nördlichen Afrika. Fische des rothen Meeres. Frankfurt am MainGoogle Scholar
  140. Rüppell E (1830) Beschreibung und Abbildung von 24 Arten kurzschwänzigen Krabben, als Beitrag zur Naturgeschichte des rothen Meeres. H.L. Brönner, Frankfurt am MainGoogle Scholar
  141. Rüppell E (1834) Description of a new genus of pectinibranchiated gastreropodous Mollusca (Leptoconchus). Proc Zool Soc London 2:105–106Google Scholar
  142. Rüppell E (1835–1838) Neue Wirbelthiere zu der Fauna von Abyssinien gehörig. Frankfurt a.M.Google Scholar
  143. Rüppell E (1844) Intorno ad alcuni Cefalopodi del mare di Messina. Letterea del Dr. Eduardo Rüppell di Frankfort sul Meno al Prof. Anastasio Cocco. Giornale del Gabinetto di Messina 26:1–7Google Scholar
  144. Rüppell E, Leuckart FS (1828-1830) Neue wirbellose Thiere des Rothen Meeres. In: Atlas zu der Reise im nördlichen Afrika. 1. Abt. Zoologie: 47 ppGoogle Scholar
  145. Sakurai A (2013) Science and societies in Frankfurt am Main. Pickering & Chatto, LondonGoogle Scholar
  146. Sanders HL (1958) Benthic studies in Bussards Bay. 1. Animal-sediment relationships. Limnol Oceanogr 3:245–258Google Scholar
  147. Schäfer W (1962) Aktuo-Paläontologie nach Studien in der Nordsee. Waldemar Kramer, Frankfurt am MainGoogle Scholar
  148. Schäfer W, Kramer W (1967) Geschichte des Senckenberg-Museums im Grundriss, Chronik der Senckenbergischen Naturforschenden Gesellschaft 1817–1966. Senckenberg-Buch 46. Waldemar Kramer, Frankfurt am MainGoogle Scholar
  149. Schückel U, Kröncke I (2013) Temporal changes in intertidal macrofauna communities over eight decades: a result of eutrophication and climate change. Estuar Coast Shelf Sci 117:210–218Google Scholar
  150. Singer A, Staneva J, Millat G, Kröncke I (2016) Modelling benthic macrofauna and seagrass distribution patterns in a North Sea tidal basin in response to 2050 climatic and environmental scenarios. Estuar Coast Shelf Sci 188:99–108Google Scholar
  151. Sonnewald M, Apel M (2016) In remembrance of Michael Türkay (3 April 1948-9 September 2015), a tower of strength in the world of crustaceans. J Crustac Biol 36:106–117.  https://doi.org/10.1163/1937240X-00002400 Google Scholar
  152. Sonnewald M, Türkay M (2010) Die Biodiversität des Epibenthos der Doggerbank (Nordsee). Ein Langzeitvergleich unter Einbeziehung von Umweltdaten. In: Epple C, Korn H, Kraus K, Stadler J (eds) Biologische Vielfalt und Klimawandel, Tagungsband mit den Beiträgen der 2. BfN-Forschungskonferenz, 2. – 3. März 2010, Bonn. BfN-Skripten, 274:80Google Scholar
  153. Sonnewald M, Türkay M (2012a) The megaepifauna of the Dogger Bank (North Sea) species composition and faunal characteristics 1991–2008. Helgol Mar Res 66:63–75Google Scholar
  154. Sonnewald M, Türkay M (2012b) Abundance analyses of mega-epibenthic species on the Dogger Bank (North Sea). Diurnal rhythms and short-term effects caused by repeated trawling, observed at a permanent station. J Sea Res 73:1–6Google Scholar
  155. Sonnewald M, Türkay M (2012c) Environmental influence on the bottom and near-bottom megafauna communities of the Dogger Bank: a long-term survey. Helgol Mar Res 66:503–511Google Scholar
  156. Spencer Jones M, Scholz J, Grischenko AV, Fujita T (2011) Japanese bryozoans from the Meiji era at the Natural History Museum, London, part 1: the Mitsukuri and Owston collections. Ann Bryozool 3:143–157Google Scholar
  157. Stuckas H, Knöbel L, Schade H, Breusing C, Hinrichsen HH, Bartel M, Langguth C, Melzner F (2017) Combining hydrodynamic modelling with geneticvs: can passive larval drift shape the genetic structure of Baltic Mytilus populations? Mol Ecol 26:2765–2782PubMedGoogle Scholar
  158. Türkay M (1974) Dr. Richard Bott (1902-1974). Nat Mus 104:135–136Google Scholar
  159. Türkay M (1975) Dr. phil. nat. Richard Bott (1902-1974) Leben und carcinologisches Werk. Crustaceana 28:298–302Google Scholar
  160. Türkay M (1986) Crustacea Decapoda Reptantia der Tiefsee des Roten Meeres. Senckenbergiana Marit 18:123–185Google Scholar
  161. Türkay M (1991) Forschungsreise zur Doggerbank. Globus 1991:229–233Google Scholar
  162. Türkay M (1992) Forschungsreise zur Doggerbank. Nat Mus 122:323Google Scholar
  163. Türkay M, Kröncke I (2004) Eine Insel unter Wasser: Die Doggerbank. Nat Mus 134:261–277Google Scholar
  164. Türkay M, Allspach A, Menner M (2011) Senckenbergisches Sammlungsverwaltungssystem, SeSam. Senckenbergische Naturforschende Gesellschaft, Frankfurt, Germany. Senckenberg Nat Forsch Mus 141Google Scholar
  165. Vanreusel A, Hilario A, Ribeiro PA, Menot L, Martinez Arbizu P (2016) Threatened by mining, polymetallic nodules are required to preserve abyssal epifauna. Sci Rep 6:26808PubMedPubMedCentralGoogle Scholar
  166. Veit-Köhler G (2004) Kliopsyllus andeep sp. n. (Copepoda: Harpacticoida) from the Antarctic deep sea – a copepod closely related to certain shallow-water species. Deep-Sea Res II 51:169–1641Google Scholar
  167. Veit-Köhler G, Guilini K, Peeken I, Quillfeldt P, Mayr C (2013) Carbon and nitrogen stable isotope signatures of deep-sea meiofauna follow oceanographical gradients across the Southern Ocean. Prog Oceanogr 110:69–79Google Scholar
  168. Voigt E (1924) Beiträge zur Kenntnis der Bryozoenfauna der subherzynen Kreidemulde. Paläontol Z 6:93–173Google Scholar
  169. Wehe T (2006) Revision of the scale worms (Polychaeta: Aphroditoidea) occurring in the seas surrounding the Arabian peninsula. Part I: Polynoidae. Fauna of Arabia 22:23–197Google Scholar
  170. Wehe T (2007) Revision of the scale worms (Polychaeta: Aphroditoidea) occurring in the seas surrounding the Arabian peninsula. Part II Sigalionidae. Fauna of Arabia 23:41–124Google Scholar
  171. Weinert M, Kröncke I, Mathis M, Neumann H, Pohlmann T, Reiss H (2016) Modelling climate change effects on benthos: distributional shifts in the North Sea from 2001 to 2099. Estuar Coast Shelf Sci 175:157–168Google Scholar
  172. Wen J, Ickert-Bond SM, Appelhans MS, Dorr LJ, Funk VA (2015) Collections-based systematics: opportunities and outlook for 2050. J Syst Evol 53:477–488Google Scholar
  173. Wenz W (1938-1944) Gastropoda. In: Handbuch der Paläozoologie, 6. I (Prosobranchia). Bornträger, BerlinGoogle Scholar
  174. Zajonz U, Lavergne E, Klaus R, Krupp F, Sheikh MA, Naseeb FS (2016) The coastal fishes and fisheries of the Socotra archipelago, Yemen. Mar Poll Bull 105:660–675.  https://doi.org/10.1016/j.marpolbul.2015.11.025 Google Scholar
  175. Zilch A (1959-1960) Gastropoda. Fortsetzung von W. Wenz. In: Handbuch der Paläozoologie 6. II (Euthyneura). Bornträger, BerlinGoogle Scholar
  176. Zinßmeister C, Wilke T, Hoppenrath M (2017) Species diversity of dinophysoid dinoflagellates of the clarion Clipperton fracture zone. Mar Biodivers 47:271–287Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany, part of Springer Nature 2017

Authors and Affiliations

  • A. Brandt
    • 1
    • 2
  • J. Scholz
    • 1
  • A. Allspach
    • 1
  • N. Brenke
    • 3
  • S. Brix
    • 4
  • K. H. George
    • 3
  • T. Hörnschemeyer
    • 1
  • S. Holst
    • 4
  • M. Hoppenrath
    • 3
  • F. Iwan
    • 3
  • A. Janssen
    • 3
  • R. Janssen
    • 1
  • D. Janussen
    • 1
  • K. Jeskulke
    • 4
  • D. Fiege
    • 1
  • S. Kaiser
    • 4
  • A. Kieneke
    • 3
  • T. C. Kihara
    • 3
  • I. Kröncke
    • 5
  • F. Krupp
    • 1
  • S. O. Martha
    • 1
    • 6
  • P. M. Martínez Arbizu
    • 3
    • 4
  • K. Meißner
    • 4
  • M. Miljutina
    • 3
  • D. Miljutin
    • 3
  • J. Renz
    • 4
  • T. Riehl
    • 1
  • H. Saeedi
    • 2
  • V. Siegler
    • 3
  • M. Sonnewald
    • 1
  • H. Stuckas
    • 7
  • G. Veit-Köhler
    • 3
  1. 1.Senckenberg Research Institute and Natural History Museum FrankfurtFrankfurtGermany
  2. 2.Institute for Ecology, Evolution and DiversityGoethe-University of Frankfurt, FB 15Frankfurt am MainGermany
  3. 3.German Centre for Marine Biodiversity Research (DZMB)Senckenberg am MeerWilhelmshavenGermany
  4. 4.German Centre for Marine Biodiversity Research (DZMB)Senckenberg am MeerHamburgGermany
  5. 5.Department for Marine ResearchSenckenberg am MeerWilhelmshavenGermany
  6. 6.Department of Life SciencesNatural History MuseumLondonUK
  7. 7.Senckenberg Natural History CollectionsDresdenGermany

Personalised recommendations