Skip to main content

Advertisement

Log in

High genetic connectivity among morphologically differentiated populations of the black sea urchin Arbacia lixula (Echinoidea: Arbacioida) across the central African Mediterranean coast

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

The present study represents the first population structure analysis of the black sea urchin Arbacia lixula across part of its African Mediterranean distribution range, the Tunisian coast. This location is appropriate for the study of biogeographical processes given the presence of a well-known discontinuous biogeographic area (the Siculo-Tunisian Strait). Patterns of morphological and genetic variation in this highly dispersive echinoid species were assessed among its populations from the western and eastern Mediterranean coasts of Tunisia. A total of 109 specimens from six sites were collected and examined for morphometric variability in seven morphometric traits. Concordant results, inferred from CDA analyses, pairwise NPMANOVA comparisons and MDS plot, showed significant inter-population differences in the measured traits among the studied populations. In addition, UPGMA clustering and discriminant/Hotelling analysis enabled the delineation of two morphologically differentiated groups assigned to the western and eastern Mediterranean basins. SIMPER analysis showed that total dry weight and test diameter were major contributors to the morphometric separation between locations and among groups. Despite the extensive morphological variation found in A. lixula, genetic analysis of the mitochondrial COI marker recovered only a single evolutionary lineage and showed a lack of population structure as inferred from the results of one-level AMOVA and pairwise comparisons of genetic differentiation. Possible explanations for this genetic pattern are discussed. Notably, the lack of COI divergence patterns, highlighted by shallow genealogy associated with high haplotype diversity and low nucleotide diversity, together with a recent demographic expansion event retrieved from mismatch distribution and BSP analysis could be considered a residual effect of a recent evolutionary history of the species in the Mediterranean.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Alcoverro T, Mariani S (2002) Effects of sea urchin grazing on seagrass (Thallasoma ciliatum) beds of a Kenyan lagoon. Mar Ecol Prog Ser 226:255–263

    Article  Google Scholar 

  • Anastasiadou C, Leonardos ID (2008) Morphological variation among populations of Atyaephyra desmarestii (millet, 1831) (Decapoda: Caridea: Atyidae) from freshwater habitats of northwestern Greece. J Crustacean Biol 28(2):240–247

    Article  Google Scholar 

  • Anderson MJ (2001) A new method for non-parametric multivariate analysis of variance. Austral Ecol 26:32–46

    Google Scholar 

  • Anderson MJ (2005) Permanova-Permutational multivariate analysis of variance. Department of Statistics, University of Auckland, Auckland

    Google Scholar 

  • Arakaki Y, Uehara T, Fagoonee I (1998) Comparative studies of the genus Echinometra from Okinawa and Mauritius. Zool Sci 15:159–168

    Article  CAS  Google Scholar 

  • Arculeo M, Brutto SL, Pancucci MP, Cammarata M, Parrinello N (1998) Allozyme similarity in two morphologically distinguishable populations of Paracentrotus lividus (Echinodermata) from distinct areas of the Mediterranean coast. J Mar Biol Assoc UK 78:231–238

    Article  Google Scholar 

  • Arnaud-Haond S, Diaz Almela E, Teixeira S (2007) Vicariance patterns in the Mediterranean Sea: east-west cleavage and low dispersal in the endemic seagrass Posidonia oceanica. J Biogeogr 14:963–976

    Article  Google Scholar 

  • Avise JC (2000) Phylogeography: the history and formation of species. MA. Harvard University Press, Cambridge

    Google Scholar 

  • Bahri-Sfar L, Lemaire C, Hassine OKB, Bonhomme F (2000) Fragmentation of sea bass populations in the western and eastern Mediterranean as revealed by microsatellite polymorphism. Proc R Soc B Biol Sci 267:929–935

    Article  CAS  Google Scholar 

  • Balisco RAT (2015) Notes on the gracious sea urchin Tripneustes gratilla (Echinodermata: Echinoidea) in Pag-asa Island, Kalayaan, Palawan, Philippines. The Palawan. Scientist 7:27–35

    Google Scholar 

  • Bardaji T, Goy JL, Zazo C, Hillaire-Marcel C, Dabrio CJ, Cabero A, Ghaleb B, Silva PG, Lario J (2009) Sea level and climate changes during OIS 5e in the western Mediterranean. Geomorphology 104:22–37

    Article  Google Scholar 

  • Benzie JAH (1999) Genetic structure of coral reef organisms: ghosts of dispersal past. Amer Zool 39:131–145

    Article  Google Scholar 

  • Béranger K, Mortier L, Gasparini GP, Gervasio L, Astraldi M, Crépon M (2004) The dynamics of the Sicily Strait: a comprehensive study from observations and models. Deep Sea Res II 51:411–440

    Article  Google Scholar 

  • Black R, Codd C, Hebbert D, Vink S, Burt J (1984) The functional significance of the relative size of Aristotle’s lantern in the sea urchin Echinometra mathaei (de Blainville). J Exp Mar Biol Ecol 77:81–97

    Article  Google Scholar 

  • Bohonak AJ (1999) Dispersal, gene flow, and population structure. Q Rev Biol 74:21–45

    Article  CAS  PubMed  Google Scholar 

  • Borrero-Pérez GH, Gonzalez-Wangüemert M, Marcos C, Pérez-Ruzafa A (2011) Phylogeography of the Atlanto-Mediterranean sea cucumber Holothuria (Holothuria) mammata: the combined effects of historical processes and current oceanographical pattern. Mol Ecol 20:1964–1975

    Article  PubMed  Google Scholar 

  • Borsa P, Blanquer A, Berrebi P (1997) Genetic structure of the flounders Platichthys flesus and P. stellatus at different geographic scales. Mar Biol 129:233–246

    Article  CAS  Google Scholar 

  • Bulleri F, Benedetti-Cecchi L, Cinelli F (1999) Grazing by the sea urchins Arbacia lixula L. and Paracentrotus lividus Lam. in the Northwest Mediterranean. J Exp Mar Biol Ecol 241:81–95

    Article  Google Scholar 

  • Calderon I, Giribet G, Turon X (2008) Two markers and one history: phylogeography of the edible common sea urchin Paracentrotus lividus in the Lusitanian region. Mar Biol 154:137–151

    Article  Google Scholar 

  • Chatti N, Zitari-Chatti R, Attia MH, Ben Khadra Y, Said K (2012) Very low mitochondrial diversity and genetic homogeneity in the starfish Echinaster sepositus along the Tunisian coast. Biochem Genet 50:45–51

    Article  CAS  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Aust J Ecol 18(1):117–143

    Article  Google Scholar 

  • Clement M, Posada D, Crandall K (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1660

    Article  CAS  PubMed  Google Scholar 

  • Cobb J, Lawrence JM (2005) Diets and coexistence of the sea urchin Lytechinus variegatus and Arbacia puntulata (Echinodermata) along the central Florida gulf coast. Mar Ecol Prog Ser 205:171–182

    Article  Google Scholar 

  • Davis JC (1986) Statistics and data analysis in geology. John Wiley and Sons

  • De Giorgi C, Martiradonna A, Lanave C, Saccone C (1996) Complete sequence of the mitochondrial DNA in the sea urchin Arbacia lixula: conserved features of the echinoid mitochondrial genome. Mol Phylogenet Evol 5:323–332

    Article  PubMed  Google Scholar 

  • Deli T, Bahles H, Said K, Chatti N (2015a) Patterns of genetic and morphometric diversity in the marbled crab (Pachygrapsus marmoratus, Brachyura, Grapsidae) populations across the Tunisian coast. Acta Oceanol Sini 34(6):49–58

    Article  CAS  Google Scholar 

  • Deli T, Ben Attia MH, Zitari-Chatti R, Said K, Chatti N (2017) Genetic and morphological divergence in the purple sea urchin Paracentrotus lividus (Echinodermata, Echinoidea) across the African Mediterranean coast. Acta Oceanol Sini 36(12):52–66 https://doi.org/10.1007/s13131-017-1090-3

    Article  Google Scholar 

  • Deli T, Chatti N, Said K, Schubart CD (2016a) Concordant patterns of mtDNA and nuclear phylogeographic structure reveal Pleistocene vicariant event in the green crab Carcinus aestuarii across the Siculo-Tunisian Strait. Mediterr Mar Sci 17(2):533–551

    Article  Google Scholar 

  • Deli T, Fratini S, Ragionieri L, Said K, Chatti N, Schubart CD (2016b) Phylogeography of the marbled crab Pachygrapsus marmoratus (Decapoda, Grapsidae) along part of the African Mediterranean coast reveals genetic homogeneity across the Siculo-Tunisian Strait versus heterogeneity across the Gibraltar Strait. Mar Biol Res 12(5):471–487

    Article  Google Scholar 

  • Deli T, Said K, Chatti N (2014) Morphological differentiation among geographically close populations of the green crab Carcinus aestuarii Nardo, 1847 (Brachyura, Carcinidae) from the Tunisian coast. Crustaceana 87(3):257–283

    Article  Google Scholar 

  • Deli T, Said K, Chatti N (2015b) Genetic differentiation among populations of the green crab Carcinus aestuarii (Brachyura, Carcinidae) from the eastern and western Mediterranean coasts of Tunisia. Acta Zool Bulg 67(3):327–335

    Google Scholar 

  • Dix TG (1970) Biology of Evechinus chloroticus (Echinoidea: Echinometridae) from different localities. New Zeal J Mar Fresh Res 4(3):267–277

    Article  Google Scholar 

  • Drummond AJ, Rambaut A, Shapiro B, Pybus OG (2005) Bayesian coalescent inference of past population dynamics from molecular sequences. Mol Biol Evol 22:1185–1192

    Article  CAS  PubMed  Google Scholar 

  • Drummond AJ, Suchard MA, Xie D, Rambaut A (2012) Bayesian phylogenetics with BEAUti and the BEAST 1.7. Mol Biol Evol 29:1969–1973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duda TF, Terbio M, Chen G, Phillips S, Olenzek AM, Chang D, Morris DW (2012) Patterns of population structure and historical demography of Conus species in the tropical Pacific. Amer Malac Bull 30:175–187

    Article  Google Scholar 

  • Duran S, Palacin C, Becerro MA, Turon X, Giribet G (2004) Genetic diversity and population structure of the commercially harvested sea urchin Paracentrotus lividus (Echinodermata, Echinoidea). Mol Ecol 13:3317–3328

    Article  CAS  PubMed  Google Scholar 

  • Ebert TA (1980) Relative growth of sea urchin jaws: an example of plastic resource allocation. Bull Mar Sci 30:467–474

    Google Scholar 

  • Ebert TA (1982) Longevity, life history, and relative body wall size in sea urchins. Ecol Monogr 45:353–394

    Article  Google Scholar 

  • Ebert TA (1988) Allometry, design and constraint of body components and of shape in sea urchins. J Nat Hist 22:1407–1425

    Article  Google Scholar 

  • Eckman JE (1996) Closing the larval loop: linking larval ecology to the population dynamics of marine benthic invertebrates. J Exp Mar Biol Ecol 200:207–237

    Article  Google Scholar 

  • Epherra L, Crespi-Abril A, Meretta PE, Maximiliano Cledón M, Enrique Mario Morsan EM, Rubilar T (2015) Morphological plasticity in the Aristotle’s lantern of Arbacia dufresnii (Phymosomatoida: Arbaciidae) off the Patagonian coast. Rev Biol Trop 63:339–351

    Google Scholar 

  • Excoffier L (2004) Patterns of DNA sequence diversity and genetic structure after a range expansion: lessons from the infinite-island model. Mol Ecol 13:853–864

    Article  CAS  PubMed  Google Scholar 

  • Excoffier L, Laval G, Schneider S (2005) Arlequin ver. 3.0: an integrated software package for population genetics data analysis. Evol Bioinformatics Online 1:47–50

    CAS  Google Scholar 

  • Excoffier L, Smouse PE, Quattro JM (1992) Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. Genetics 131:479–491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fenaux L (1968) Maturation des gonades et cycle saisonnier des larves chez A. lixula, P. lividus et P. microtuberculatus à Villefranche-Sur-Mer. Vie Milieu A Biol Ma 19:1–52

    Google Scholar 

  • Fernandez C (1996) Croissance et nutrition de Paracentrotus lividus dans le cadre d'un projet aquacole avec alimentation artificielle. PhD thesis, Université de Corse

  • Fernandez C, Boudouresque C-F (1997) Phenotypic plasticity of Paracentrotus lividus (Echinodermata: Echinoidea) in a lagoonal environment. Mar Ecol Prog Ser 152:145–154

    Article  Google Scholar 

  • Fernandez C, Boudouresque C-F (2000) Nutrition of the sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) fed different artificial food. Mar Ecol Prog Ser 204:131–141

    Article  CAS  Google Scholar 

  • Forcucci D, Lawrence JM (1986) Effect of low salinity on the activity, feeding, growth and absorption efficiency of Luidia clathrata (Echinodermata: Asteroidea). Mar Biol 92:315–321

    Article  Google Scholar 

  • Francour P, Boudouresque C-F, Harmelin JG, Harmelin-Vivien ML, Quignard JP (1994) Are the Mediterranean waters becoming warmer? Information from biological indicators. Mar Pollut Bull 28:523–526

    Article  Google Scholar 

  • Fu YX (1997) Statistical tests of neutrality of mutations against population growth, hitchhiking and background selection. Genet Soc Amer 147:915–925

    CAS  Google Scholar 

  • Galarza JA, Carreras-Carbonell J, Macpherson E, Pascual M, Roques S, Turner GF (2009) The influence of oceanographic fronts and early-life history traits on connectivity among littoral fish species. Proc Natl Acad Sci U S A 106:1473–1478

    Article  PubMed  PubMed Central  Google Scholar 

  • Galindo HM, Olson DB, Palumbi SR (2006) Seascape genetics: a coupled oceanographic-genetic model predicts population structure of Caribbean corals. Curr Biol 16:1622–1626

    Article  CAS  PubMed  Google Scholar 

  • Gerlach G, Atema J, Kingsford M, Black KP, Miller-Sims V (2007) Smelling home can prevent dispersal of reef fish larvae. Proc Natl Acad Sci U S A 104:858–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gianguzza P, Agnetta D, Bonaviri C, Di Trapani F, Visconti G, Gianguzza F, Riggio S (2011) The rise of thermophilic sea urchins and the expansion of barren grounds in the Mediterranean Sea. Chem Ecol 27:129–134

    Article  Google Scholar 

  • Guidetti P, Fraschetti S, Terlizzi A, Boero F (2003) Distribution patterns of sea urchins and barrens in shallow Mediterranean rocky reefs impacted by the illegal fishery of the rock-boring mollusc Lithophaga lithophaga. Mar Biol 143:1135–1142

    Article  Google Scholar 

  • Hagen NT (2008) Enlarged lantern size in similar-sized, sympatric, sibling species of Strongylocentrotid sea urchins: from phenotypic accommodation to functional adaptation for durophagy. Mar Biol 153:907–924

    Article  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95 / 98 / NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) PAST: paleontological statistics software package for education and data analysis. Palaeontol Electron 4(1):1–9

    Google Scholar 

  • Hampton KR, Hopkins MJ, McNamara JC, Thurman CL (2014) Intraspecific variation in carapace morphology among fiddler crabs (genus Uca) from the Atlantic coast of Brazil. Aquatic Biol 20:53–67

    Article  Google Scholar 

  • Harmelin JG, Hereu B, De Maisonnave LM, Teixidor N, Domínguez L, Zabala M (1995) Indicateurs de biodiversité en milieu marin: les échinodermes. Fluctuations temporelles des peuplements d’échinodermes à Port-Cros. Comparaison entre les années 1982–84 et 1993–95. Internal Report. Port Cros National Park

  • Harpending HC (1994) Signature of ancient population growth in a low-resolution mitochondrial DNA mismatch distribution. Hum Biol 66(4):591–600

    CAS  PubMed  Google Scholar 

  • Hauser L, Carvalho GR (2008) Paradigm shifts in marine fisheries genetics: ugly hypotheses slain by beautiful facts. Fish Fish 9:333–362

    Article  Google Scholar 

  • Hedgecock D (1986) Is gene flow from pelagic larval dispersal important in the adaptation and evolution of marine invertebrates? Bull Mar Sci 39:550–565

    Google Scholar 

  • Hellberg ME (2009) Gene flow and isolation among populations of marine animals. Annu Rev Ecol Evol Syst 40:291–310

    Article  Google Scholar 

  • Hilbish TJ (1996) Population genetics of marine species: the interaction of natural selection and historically differentiated populations. J Exp Mar Biol Ecol 200:67–83

    Article  Google Scholar 

  • Hopkins MJ, Thurman CL (2010) The geographic structure of morphological variation of eight species of fiddler crabs (Ocypodidae: genus Uca) from the eastern United States and Mexico. Biol J Linnean Soc 100:248–270

    Article  Google Scholar 

  • Hudson RR (1990) Gene genealogies and the coalescent process. In: Futuyama D, Antonovics JD (eds) Oxford surveys in evolutionary biology. Oxford University Press, Oxford, pp 1–44

    Google Scholar 

  • Johnson RA, Wichern DW (1998) Applied multivariate statistical analysis, Fourth edn. Prentice-Hall, Inc, USA, 816 pp

    Google Scholar 

  • Kaouèche M, Bahri-Sfara L, González-Wangüemert M, Pérez-Ruzafa Á, Ben Hassine OK (2011) Allozyme and mtDNA variation of white seabream Diplodus sargus populations in a transition area between western and eastern Mediterranean basins (Siculo-Tunisian Strait). Afr J Marine Sci 33(1):79–90

    Article  Google Scholar 

  • Kelly RP, Palumbi SR (2010) Genetic structure among 50 species of the northeastern Pacific rocky intertidal community. PLoS One 5(1):e8594

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kimura M, Weiss GH (1964) The stepping stone model of population structure and the decrease of genetic correlation with distance. Genetics 49:561–576

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lawrence JM, Agatsuma Y (2007) The ecology of Tripneustes. Dev Aquacult Fish Sci 37:499–520

    Google Scholar 

  • Lessios HA (1981) Divergence in allopatry: molecular and morphological differentiation between sea urchins separated by the isthmus of Panama. Evolution 35:618–634

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA (2009) Speciation in sea urchins. In: Harris L, Böttger S, Walker C, Lesser M (eds) Echinoderms: Durham proceedings of the 12th international echinoderm conference, 7–11 august 2006, Durham, New Hampshire, USA. CRC Press, London, pp 91–101

    Chapter  Google Scholar 

  • Lessios HA (2011) Speciation genes in free-spawning marine invertebrates. Integr Comp Biol 51:456–465

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Kane J, Robertson DR (2003) Phylogeography of the pantropical sea urchin Tripneustes: contrasting patterns of population structure between oceans. Evolution 57:2026–2036

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Lockhart S, Collin R, Sotil G, Sanchez-Jerez P, Zigler KS, Perez AF, Garrido MJ, Geyer LB, Bernardi G, Vacquier VD, Haroun R, Kessing BD (2012) Phylogeography and bindin evolution in Arbacia, a sea urchin genus with an unusual distribution. Mol Ecol 21:130–144

    Article  CAS  PubMed  Google Scholar 

  • Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452

    Article  CAS  PubMed  Google Scholar 

  • Li WH (1977) Distribution of nucleotide differences between two randomly chosen cistrons in a finite population. Genetics 85:331–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lumnigas LJL (1994) La plasticité chez l'oursin Sphaerechinus granularis en rade de Brest (Bretagne, France). PhD thesis, Université de Bretagne Occidentale

  • Maltagliati F, Di Giuseppe G, Barbieri M, Castelli A, Dini F (2010) Phylogeography and genetic structure of the edible sea urchin Paracentrotus lividus (Echinodermata: Echinoidea) inferred from the mitochondrial cytochrome b gene. Biol J Linnean Soc 100:910–923

    Article  Google Scholar 

  • McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol Ecol 9:1391–1400

    Article  CAS  PubMed  Google Scholar 

  • Meiri S (2010) Length-weight allometries in lizards. J Zool 3:218–226

    Google Scholar 

  • Mejri R, Brutto SL, Hassine OKB, Arculeo M (2009) A study on Pomatoschistus tortonesei miller 1968 (Perciformes, Gobiidae) reveals the Siculo-Tunisian Strait (STS) as a breakpoint to gene flow in the Mediterranean basin. Mol Phylogenet Evol 53:596–601

    Article  CAS  PubMed  Google Scholar 

  • Middleton DAJ, Gurney WSC, Gage JD (1998) Growth and energy allocation in the deep-sea urchin Echinus affinis. Biol J Linnean Soc 64:315–336

    Google Scholar 

  • Michaud JE, Echternacht AC (1995) Geographic variation in the life history of the lizard Anolis carolinensis and support for the pelvic constraint model. J Herpetol 29:86–97

    Article  Google Scholar 

  • Mortensen T (1935) A monograph of the Echinoidea. II. Bothriocidaroida, Melonechinoida, lepidocentroida, and Stirodonta. Copenhagen & London: Reitzel & Oxford Univ. Press. 647 p

  • Muths D, Jollivet D, Gentil F, Davoult D (2009) Largescale genetic patchiness among NE Atlantic populations of the brittle star Ophiothrix fragilis. Aquatic Biol 5:117–132

    Article  Google Scholar 

  • Nei M (1987) Molecular Euolutionary genetics. Columbia University Press, New York

    Book  Google Scholar 

  • Nikula R, Vainola R (2003) Phylogeography of Cerastoderma glaucum (Bivalvia: Cardiidae) across Europe: a major break in the eastern Mediterranean. Mar Biol 143:339–350

    Article  Google Scholar 

  • Oliver TA, Garfield DA, Manier MK, Haygood R, Wray GA, Palumbi SR (2010) Whole genome positive selection and habitat-driven evolution in a shallow and a deep-sea urchin. Genome Biol Evol 2:800–814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Palacin C, Turon X, Ballesteros M, Giribet G, Lopez S (1998) Stock evaluation of three littoral echinoid species on the Catalan coast (north-western Mediterranean). Mar Ecol 19:163–177

    Article  Google Scholar 

  • Palumbi SR (1995) Using genetics as an indirect estimator of larval dispersal. In: McEdward L., eds. Larval Ecology. CRC Press, pp. 369–386

  • Palumbi SR, Grabowsky G, Duda T, Geyer L, Tachino N (1997) Speciation and population genetic structure in tropical Pacific sea urchins. Evolution 51:1506–1517

    Article  PubMed  Google Scholar 

  • Patarnello T, Volckaert FAM, Castilho R (2007) Pillars of Hercules: is the Atlantic-Mediterranean transition a phylogeographical break? Mol Ecol 16:4426–4444

    Article  PubMed  Google Scholar 

  • Pearse JS (2006) Ecological role of purple sea urchins. Science 314:940–941

    Article  CAS  PubMed  Google Scholar 

  • Pedrotti ML (1993) Spatial and temporal distribution and recruitment of echinoderm larvae in the Ligurian Sea. J Mar Biol Assoc U K 73:513–530

    Article  Google Scholar 

  • Penant G, Aurelle D, Feral JP, Chenuil A (2013) Planktonic larvae do not ensure gene flow in the edible sea urchin Paracentrotus lividus. Mar Ecol Prog Ser 480:155–170

    Article  Google Scholar 

  • Pérez-Portela R, Villamor A, Almada VC (2010) Phylogeography of the sea star Marthasterias glacialis (Asteroidea, Echinodermata): deep genetic divergence between mitochondrial lineages in the north-western Mediterranean. Mar Biol 157:2015–2028

    Article  Google Scholar 

  • Pespeni MH, Barney BT, Palumbi SR (2013) Differences in the regulation of growth and biomineralization genes revealed through long-term common-garden acclimation and experimental genomics in the purple sea urchin. Evolution (special section). https://doi.org/10.1111/evo.12036

  • Pinardi N, Masetti E (2000) Variability of the large scale general circulation of the Mediterranean Sea from observations and modelling: a review. Paleogeogr Paleoclimatol Paleoecol 158:153–174

    Article  Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Posada D, Crandall KA (2001) Selecting the best-fit model of nucleotide substitution. Syst Biol 50:580–601

    Article  CAS  PubMed  Google Scholar 

  • Privitera D, Noli M, Falugi C, Chiantore M (2011) Benthic assemblages and temperature effects on Paracentrotus lividus and Arbacia lixula larvae and settlement. J Exp Mar Biol Ecol 407:6–11

    Article  Google Scholar 

  • Pujolar JM, Pogson GH (2011) Positive Darwinian selection in gamete recognition proteins of Strongylocentrotus sea urchins. Mol Ecol 20:4968–4982

    Article  CAS  PubMed  Google Scholar 

  • Quesada H, Beynon CM, Skibinski DOF (1995) A mitochondrial DNA discontinuity in the mussel Mytilus galloprovincialis Lmk: Pleistocene vicariance biogeography and secondary intergradations. Mol Biol Evol 12:521–524

    CAS  PubMed  Google Scholar 

  • Rambaut A, Drummond AJ (2007) Tracer v 1.4.8. Institute of Evolutionary Biology, University of Edinburgh, Available from: http//beast.edu.ac.uk/Tracer

  • Ramos-Onsins SE, Rozas J (2002) Statistical properties of new neutrality tests against population growth. Mol Biol Evol 19:2092–2100

    Article  CAS  PubMed  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. In: Misener S, Krawetz SA (eds) Bioinformatics methods and protocols, vol 132. Humana Press, New Jersey, pp 365–386

    Chapter  Google Scholar 

  • Sala E, Boudouresque CF, Harmelin-Vivien ML (1998) Fishing, trophic cascades, and the structure of algal assemblages: evaluation of an old but untested paradigm. Oikos 82:425–439

    Article  Google Scholar 

  • Sammon J (1969) A nonlinear mapping for data structure analysis. IEEE Trans Comput 18(5):401–409

    Article  Google Scholar 

  • Sanford E, Kelly MW (2011) Local adaptation in the sea. Annu Rev Mar Sci 3:509–535

    Article  Google Scholar 

  • Selkoe KA, Watson JR, White C, Ben Horin T, Iacchei M, Mitarai S (2010) Taking the chaos out of genetic patchiness: seascape genetics reveals ecological and oceanographic drivers of genetic patterns in three temperate reef species. Mole. Ecol 19:3708–3726

    Google Scholar 

  • Serena F (2005) Field identification guide to the sharks and rays of the Mediterranean and Black Sea. In: FAO Species identification Guide for Fishery Purposes. Rome: FAO, 97 pp

  • Simon C, Frati F, Beckenbach A, Crespi B, Liu H, Flook P (1994) Evolution, weighting, and phylogenetic utility of mitochondrial gene sequences and a compilation of conserved polymerase chain reaction primers. Ann Entomol Soc Am 87:651–701

    Article  CAS  Google Scholar 

  • Slatkin M, Barton NH (1989) A comparison of three indirect methods for estimating average levels of gene flow. Int J Org Evolution 43:1349–1368

    Article  Google Scholar 

  • Slatkin M, Hudson RR (1991) Pairwise comparisons of mitochondrial DNA 731 sequences in stable and exponentially growing populations. Genetics 129:555–562

    CAS  PubMed  PubMed Central  Google Scholar 

  • Slatkin M, Maddison WP (1990) Detecting isolation by distance using phylogenies of genes. Genetics 126:249–260

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sponer R, Deheyn D, Roy MS (2001) Large genetic distances within a population of Amphipholis squamata (Echinodermata; Ophiuroidea) do not support colour varieties as sibling species. Mar Ecol Prog Ser 219:169–175

    Article  Google Scholar 

  • StatSoft Inc (1993) STATISTICA (data analysis software system: for the windows operating system reference for statistical procedures), version 4.5. www.statsoft.com. Computer program

  • Stefanini G (1911) Di alcune Arbacia fossili. Riv Ital Paleontol 17:51–52

    Google Scholar 

  • Tajima F (1983) Evolutionary relationships of DNA sequences in finite populations. Genetics 105:437–460

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tajima F (1989) The effect of change in population size on DNA polymorphism. Genetics Soc Amer 123:597–601

    CAS  Google Scholar 

  • Tajima F, Nei M (1984) Estimation of evolutionary distance between nucleotide sequences. Mol Biol Evol 1:269–285

    CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Templeton AR, Crandall KA, Sing CF (1992) A cladistic analysis of phenotypic associations with haplotypes inferred from restriction endonuclease mapping and DNA sequence data. III. Cladogram estimation. Genetics 132:619–633

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thiede J (1978) A glacial Mediterranean. Nature 276:680–683

    Article  Google Scholar 

  • Tortonese E (1965) Echinodermata. Fauna d’Italia vol. VI. Bologna: Calderini. 422 p

  • Venables WN, Ripley BD (2002) Modern applied statistics with S, Fourth edn. Springer-Verlag, New York, p 495

    Book  Google Scholar 

  • Wangensteen OS, Dupont S, Casties I, Turon X, Palacin C (2013) Some like it hot: temperature and pH modulate larval development and settlement of the sea urchin Arbacia lixula. J Exp Mar Biol Ecol 449:304–311

    Article  Google Scholar 

  • Wangensteen OS, Turon X, Garcia-Cisneros A, Recasens M, Romero J, Palacin C (2011) A wolf in sheep’s clothing: carnivory in dominant sea urchins in the Mediterranean. Mar Ecol Prog Ser 441:117–128

    Article  Google Scholar 

  • Wangensteen OS, Turon X, Pérez-Portela R, Palacin C (2012) Natural or naturalized? Phylogeography suggests that the abundant sea urchin Arbacia lixula is a recent colonizer of the Mediterranean. PLoS One 7(9):e45067

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waples RS (1998) Separating the wheat from the chaff: patterns of genetic differentiation in high gene flow species. J Hered 89:438–450

    Article  Google Scholar 

  • Waters JM, Roy MS (2004) Phylogeography of a high-dispersal New Zealand sea-star: does upwelling block gene-flow? Mol Ecol 13:2797–2806

    Article  CAS  PubMed  Google Scholar 

  • Weersing K, Toonen RJ (2009) Population genetics, larval dispersal, and connectivity in marine systems. Mar Ecol Prog Ser 393:1–12

    Article  Google Scholar 

  • Wing SR, Largier JL, Botsford LW, Quinn JF (1995) Settlement and transport of benthic invertebrates in an intermittent upwelling zone. Limnol Oceanogr 40:316–329

    Article  Google Scholar 

  • Zitari-Chatti R, Chatti N, Elouaer A, Said K (2008) Genetic variation and population structure of the caramote prawn Penaeus kerathurus (Forskal) from the eastern and western Mediterranean coasts in Tunisia. Aquac Res 39:70–76

    Article  Google Scholar 

  • Zitari-Chatti R, Chatti N, Fulgione D, Gaiazza I, Aprea G, Elouaer A, Said K, Capriglione T (2009) Mitochondrial DNA variation in the caramote prawn Penaeus (Melicertus) kerathurus across a transition zone in the Mediterranean Sea. Genetica 136:439–447

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank three anonymous reviewers for their very helpful and interesting comments and suggestions that improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Temim Deli.

Additional information

Communicated by P. Martinez Arbizu

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Deli, T., Mohamed, A.B., Attia, M.H.B. et al. High genetic connectivity among morphologically differentiated populations of the black sea urchin Arbacia lixula (Echinoidea: Arbacioida) across the central African Mediterranean coast. Mar Biodiv 49, 603–620 (2019). https://doi.org/10.1007/s12526-017-0832-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-017-0832-y

Keywords

Navigation