Advertisement

Marine Biodiversity

, Volume 48, Issue 1, pp 13–34 | Cite as

Review of recent trends in ecological studies of deep-sea meiofauna, with focus on patterns and processes at small to regional spatial scales

  • Norliana Rosli
  • Daniel Leduc
  • Ashley A. Rowden
  • P. Keith Probert
Meio Extreme

Abstract

Meiofauna are an important component of deep-sea benthic communities because they are highly abundant and play an important role in the sediment. This review describes trends in the ecology of deep-sea meiofauna based on results from studies published since the review by Soltwedel (2000), with a focus on spatial distribution patterns of deep-sea meiofauna communities at regional (~100–10,000 km), habitat (~0.1–100 km), local (~0.1–100 m), and small scales (~0.1–10 cm), and with reference to the effects of environmental variables and disturbance (biological and human) that influence these patterns. The focus of deep-sea meiofauna studies has shifted from investigations of patterns related to water depth, regions, and vertical gradients in the sediment to the effect of deep-sea habitats on meiofauna communities, the relative importance of different spatial scales, and the relative impacts of disturbance on meiofauna communities. Although deep-sea meiofauna community attributes (abundance, diversity, and community structure) are shown to vary across all spatial scales, the greatest variability is generally observed at regional and sediment depth scales. However, generalisations are difficult to make due to the limited number of studies that allow direct comparisons across multiple scales. At the regional scale, variation in meiofaunal communities appears mostly related to differences in surface productivity, other food proxies, and physical disturbance; however, geological history, oceanographic boundaries and ocean current flows may also contribute to regional patterns. At the small sediment depth scale, meiofauna communities are typically influenced by food proxies, oxygen availability, sediment characteristics, seafloor topography proxies, microhabitat heterogeneity, and bioturbation by larger fauna. Overall, there have been a limited number of studies of small horizontal scale patterns, at seamounts, and in certain geographic regions such as the Indian Ocean and Antarctica. Fewer studies have been conducted in deep ocean basins compared to continental margin. Most studies have focused on nematodes, while other meiofauna taxa such as harpacticoid copepods have not been investigated as often in deep-sea ecological studies. The findings of this review provide a new perspective on the state of knowledge of the factors influencing meiofauna in the deep-sea ecosystem, and highlights the need for future meiofauna studies to provide information that can assist the management of human activities in vulnerable deep-sea areas.

Keywords

Meiofauna Deep sea Regional scale Habitat scale Local scale Small scale 

Notes

Acknowledgements

This study was part of NIWA’s research project “Impact of resource use on vulnerable deep-sea communities” funded by the New Zealand Ministry of Business, Innovation and Employment (CO1X0906). Andy McKenzie (NIWA) provided help for map illustration using R software. We also acknowledge funding from the Department of Marine Science, University of Otago, New Zealand, and Universiti Pendidikan Sultan Idris through the Ministry of Higher Education, Malaysia. We thank two anonymous reviewers for providing constructive criticisms on the manuscript.

Compliance with ethical standards

The authors declare that they have no conflict of interest. This article does not contain any studies with human participants or animals performed by any of the authors.

Supplementary material

12526_2017_801_MOESM1_ESM.docx (297 kb)
Supplementary Table 1 (DOCX 297 kb)

References

  1. Ahnert A, Schriever G (2001) Response of abyssal Copepoda Harpacticoida (Crustacea) and other meiobenthos to an artificial disturbance and its bearing on future mining for polymetallic nodules. Deep-Sea Res. II Top. Stud. Oceanogr. 48:3779–3794.  https://doi.org/10.1016/s0967-0645(01)00067-4 Google Scholar
  2. Alkemade R, Wielemaker A, Dejong SA, Sandee AJJ (1992) Experimental-evidence for the role of bioturbation by the marine nematode diplolaimella-dievengatensis in stimulating the mineralization of spartina-anglica detritus. Mar Ecol Prog Ser 90:149–155.  https://doi.org/10.3354/meps090149 Google Scholar
  3. Ansari ZA (2000) Distribution of deep-sea benthos in the proposed mining area of Central Indian Basin. Mar Georesour Geotechnol 18:201–207.  https://doi.org/10.1080/10641190009353788 Google Scholar
  4. Baguley JG, Montagna PA, Hyde LJ, Kalke RD, Rowe GT (2006a) Metazoan meiofauna abundance in relation to environmental variables in the northern Gulf of Mexico deep sea. Deep-Sea Res Part I-Oceanogr Res Pap 53:1344–1362.  https://doi.org/10.1016/j.dsr.2006.05.012 Google Scholar
  5. Baguley JG, Montagna PA, Lee W, Hyde LJ, Rowe GT (2006b) Spatial and bathymetric trends in Harpacticoida (Copepoda) community structure in the Northern Gulf of Mexico deep-sea. J Exp Mar Biol Ecol 330:327–341.  https://doi.org/10.1016/j.jembe.2005.12.037 Google Scholar
  6. Baguley JG, Montagna PA, Cooksey C, Hyland JL, Bang HW, Morrison C, Kamikawa A, Bennetts P, Saiyo G, Parsons E, Herdener M, Ricci M (2015) Community response of deep-sea soft-sediment metazoan meiofauna to the Deepwater Horizon blowout and oil spill. Mar Ecol Prog Ser 528:127–140Google Scholar
  7. Baldrighi E, Aliani S, Conversi A, Lavaleye M, Borghini M, Manini E (2013) From microbes to macrofauna: an integrated study of deep benthic communities and their response to environmental variables along the Malta Escarpment (Ionian Sea). Sci Mar 77:625–639.  https://doi.org/10.3989/scimar.03811.03B Google Scholar
  8. Baldrighi E, Manini E (2015) Deep-sea meiofauna and macrofauna diversity and functional diversity: are they related? Mar Biodivers 45:469–488.  https://doi.org/10.1007/s12526-015-0333-9 Google Scholar
  9. Balsamo M, Semprucci F, Frontalini F, Coccioni R (2012) Meiofauna as a tool for marine ecosystem biomonitoring. In: Cruzado A (ed) Marine Ecosystems InTechGoogle Scholar
  10. Bashmachnikov I, Loureiro CM, Martins A (2013) Topographically induced circulation patterns and mixing over Condor seamount. Deep Sea Research Part II: Topical Studies in Oceanography 98, Part A:38–51.  https://doi.org/10.1016/j.dsr2.2013.09.014
  11. Berkenbusch K, Probert PK, Nodder SD (2011) Comparative biomass of sediment benthos across a depth transect, Chatham Rise, Southwest Pacific Ocean. Mar Ecol Prog Ser 425:79–90.  https://doi.org/10.3354/meps09014 Google Scholar
  12. Bernhard JM, Morrison CR, Pape E, Beaudoin DJ, Todaro MA, Pachiadaki MG (2015) Metazoans of redoxcline sediments in Mediterranean deep-sea hypersaline anoxic basins. BMC Biol 13.  https://doi.org/10.1186/s12915-015-0213-6
  13. Bett BJ et al (1994) Sampler bias in the quantitative study of deep-sea meiobenthos. Mar Ecol Prog Ser 104:197–203.  https://doi.org/10.3354/meps104197 Google Scholar
  14. Bianchelli S, Gambi C, Pusceddu A, Danovaro R (2008) Trophic conditions and meiofaunal assemblages in the Bari Canyon and the adjacent open slope (Adriatic Sea). Chem Ecol 24:101–109.  https://doi.org/10.1080/02757540801963386 Google Scholar
  15. Bianchelli S, Gambi C, Zeppilli D, Danovaro R (2010) Metazoan meiofauna in deep-sea canyons and adjacent open slopes: a large-scale comparison with focus on the rare taxa. Deep-Sea Res Part I-Oceanogr Res Pap 57:420–433.  https://doi.org/10.1016/j.dsr.2009.12.001 Google Scholar
  16. Bianchelli S, Gambi C, Mea M, Pusceddu A, Danovaro R (2013) Nematode diversity patterns at different spatial scales in bathyal sediments of the Mediterranean Sea. Biogeosciences 10:5465–5479.  https://doi.org/10.5194/bg-10-5465-2013 Google Scholar
  17. Bik HM, Thomas WK, Lunt DH, Lambshead PJD (2010) Low endemism, continued deep-shallow interchanges, and evidence for cosmopolitan distributions in free-living marine nematodes (order Enoplida). BMC Evol Biol 10:1–10.  https://doi.org/10.1186/1471-2148-10-389 Google Scholar
  18. Boeckner MJ, Sharma J, Proctor HC (2009) Revisiting the meiofauna paradox: dispersal and colonization of nematodes and other meiofaunal organisms in low- and high-energy environments. Hydrobiologia 624:91–106.  https://doi.org/10.1007/s10750-008-9669-5 Google Scholar
  19. Bongiorni L, Ravara A, Parretti P, Santos RS, Rodrigues CF, Amaro T, Cunha MR (2013) Organic matter composition and macrofaunal diversity in sediments of the Condor Seamount (Azores, NE Atlantic). Deep Sea Research Part II: Topical Studies in Oceanography 98, Part A:75–86.  https://doi.org/10.1016/j.dsr2.2013.08.006
  20. Boucher G, Lambshead PJD (1995) Ecological biodiversity of marine nematodes in samples from temperate, tropical, and deep sea regions. Conservation Biology 9(6):1594–1604.  https://doi.org/10.1046/j.1523-1739.1995.09061594.x
  21. Bright M, Plum C, Riavitz LA, Nikolov N, Martinez Arbizu P, Cordes EE, Gollner S (2010) Epizooic metazoan meiobenthos associated with tubeworm and mussel aggregations from cold seeps of the northern Gulf of Mexico. Deep Sea Res Part II Top Stud Oceanogr 57:1982–1989.  https://doi.org/10.1016/j.dsr2.2010.05.003 PubMedPubMedCentralGoogle Scholar
  22. Brown CJ, Lambshead PJD, Smith CR, Hawkins LE, Farley R (2001) Phytodetritus and the abundance and biomass of abyssal nematodes in the central, equatorial Pacific. Deep-Sea Res I Oceanogr Res Pap 48:555–565.  https://doi.org/10.1016/S0967-0637(00)00049-2 Google Scholar
  23. Canals M, Danovaro R, Durrieu de Madron X, Heussner S, Palanques A, Fabres J (2006) Flushing submarine canyons. Nature 444:354–357PubMedGoogle Scholar
  24. Clark MR, Rowden AA, Schlacher T, Williams A, Consalvey M, Stocks KI, Rogers AD, O’Hara TD, White M, Shank TM, Hall-Spencer JM (2010) The Ecology of Seamounts: Structure, Function, and Human Impacts. In: Annual Review of Marine Science, vol 2. Annual Review of Marine Science. Annual Reviews, Palo Alto, pp 253-278.  https://doi.org/10.1146/annurev-marine-120308-081109
  25. Cook AA, Lambshead PJD, Hawkins LE, Mitchell N, Levin LA (2000) Nematode abundance at the oxygen minimum zone in the Arabian Sea. Deep-Sea Res Part II-Top Stud Oceanogr 47:75–85.  https://doi.org/10.1016/s0967-0645(99)00097-1 Google Scholar
  26. Copley JTP, Flint HC, Ferrero TJ, Van Dover CL (2007) Diversity of melofauna and free-living nematodes in hydrothermal vent mussel beds on the northern and southern East Pacific Rise. J Mar Biol Assoc U K 87:1141–1152.  https://doi.org/10.1017/s0025315407055956 Google Scholar
  27. Coull BC (1990) Are members of the meiofauna food for higher trophic levels. Trans Am Microsc Soc 109:233–246.  https://doi.org/10.2307/3226794 Google Scholar
  28. Coull BC, Chandler GT (1992) Pollution and meiofauna - field, laboratory, and mesocosm studies. Oceanogr Mar Biol 30:191–271Google Scholar
  29. Covazzi Harriague A, Bavestrello G, Bo M, Borghini M, Castellano M, Majorana M, Massa F, Montella A, Povero P, Misic C (2014) Linking environmental forcing and trophic supply to benthic communities in the Vercelli Seamount area (Tyrrhenian Sea). PLoS One 9.  https://doi.org/10.1371/journal.pone.0110880
  30. Cullen DJ (1973) Bioturbation of Superficial Marine Sediments by Intertitial Meiobenthos. Nature 242:323–324Google Scholar
  31. Cuvelier D, Beesau J, Ivanenko VN, Zeppilli D, Sarradin P-M, Sarrazin J (2014) First insights into macro- and meiofaunal colonisation patterns on paired wood/slate substrata at Atlantic deep-sea hydrothermal vents. Deep Sea Research Part I: Oceanographic Research Papers 87:70–81.  https://doi.org/10.1016/j.dsr.2014.02.008
  32. Danovaro R, Tselepides A, Otegui A, Della Croce N (2000) Dynamics of meiofaunal assemblages on the continental shelf and deep-sea sediments of the Cretan Sea (NE Mediterranean): relationships with seasonal changes in food supply. Prog Oceanogr 46:367–400.  https://doi.org/10.1016/s0079-6611(00)00026-4 Google Scholar
  33. Danovaro R, Gambi C, Della Croce N (2002) Meiofauna hotspot in the Atacama Trench, eastern South Pacific Ocean. Deep-Sea Res I Oceanogr Res Pap 49:843–857.  https://doi.org/10.1016/S0967-0637(01)00084-X Google Scholar
  34. Danovaro R, Dell’Anno A, Pusceddu A (2004) Biodiversity response to climate change in a warm deep sea. Ecol Lett 7:821–828.  https://doi.org/10.1111/j.1461-0248.2004.00634.x Google Scholar
  35. Danovaro R, Gambi C, Lampadariou N, Tselepides A (2008) Deep-sea nematode biodiversity in the Mediterranean basin: testing for longitudinal, bathymetric and energetic gradients. Ecography 31:231–244.  https://doi.org/10.1111/j.0906-7590.2008.5484.x Google Scholar
  36. Danovaro R, Bianchelli S, Gambi C, Mea M, Zeppilli D (2009) α-, β-, γ-, δ- and ε- diversity of deep-sea nematodes in canyons and open slopes of Northeast Atlantic and Mediterranean margins. Mar Ecol Prog Ser 396:197–209.  https://doi.org/10.3354/MEPS08269 Google Scholar
  37. Danovaro R, Compy JB, Corinaldesi C, D’Onghia G, Galil B, Gambi C, Gooday AJ, Lampadariou N, Luna GM, Morigi C, Olu K, Polymenakou P, Ramirez-Llodra E, Sabbatini A, Sarda F, Sibuet M, Tselepides A (2010a) Deep-Sea Biodiversity in the Mediterranean Sea: The Known, the Unknown, and the Unknowable. PLoS One 5.  https://doi.org/10.1371/journal.pone.0011832
  38. Danovaro R, Dell’Anno A, Pusceddu A, Gambi C, Heiner I, Mobjerg Kristensen R (2010b) The first metazoa living in permanently anoxic conditions. BMC Biol 8.  https://doi.org/10.1186/1741-7007-8-30
  39. Danovaro R, Carugati L, Corinaldesi C, Gambi C, Guilini K, Pusceddu A, Vanreusel A (2013) Multiple spatial scale analyses provide new clues on patterns and drivers of deep-sea nematode diversity. Deep-Sea Res Part II-Top Stud Oceanogr 92:97–106.  https://doi.org/10.1016/j.dsr2.2013.03.035 Google Scholar
  40. Danovaro R, Gambi C, Dell’Anno A, Corinaldesi C, Pusceddu A, Neves RC, Kristensen RM (2016) The challenge of proving the existence of metazoan life in permanently anoxic deep-sea sediments. BMC Biol 14:43.  https://doi.org/10.1186/s12915-016-0263-4 PubMedPubMedCentralGoogle Scholar
  41. De Mesel I, Derycke S, Swings J, Vincx M, Moens T (2006) Role of nematodes in decomposition processes: Does within-trophic group diversity matter? Mar Ecol Prog Ser 321:157–166.  https://doi.org/10.3354/meps321157 Google Scholar
  42. de Stigter HC, Boer W, de Jesus Mendes PA, Jesus CC, Thomsen L, van den Bergh GD, van Weering TCE (2007) Recent sediment transport and deposition in the Nazaré Canyon, Portuguese continental margin. Mar Geol 246:144–164.  https://doi.org/10.1016/j.margeo.2007.04.011 Google Scholar
  43. Degen R, Riavitz L, Gollner S, Vanreusel A, Plum C, Bright M (2012) Community study of tubeworm-associated epizooic meiobenthos from deep-sea cold seeps and hot vents. Mar Ecol Prog Ser 468:135–148.  https://doi.org/10.3354/meps09889 Google Scholar
  44. Dinet A (1973) Quantitative distribution of deep-sea meiobenthos in Walvis ridge area (South-West-Africa). Mar Biol 20:20–26.  https://doi.org/10.1007/bf00387670 Google Scholar
  45. Easton EE, Thistle D (2016) Do some deep-sea, sediment-dwelling species of harpacticoid copepnods have 1000-km-scale range sizes? Mol Ecol 25:4301–4318.  https://doi.org/10.1111/mec.13744 PubMedGoogle Scholar
  46. Etter RJ, Grassle JF (1992) Patterns of species-diversity in the deep-sea as a function of sediment particle-size diversity. Nature 360:576–578.  https://doi.org/10.1038/360576a0 Google Scholar
  47. Feller RJ, Coull BC (1995) Non-selective ingestion of meiobenthos by juvenile spot (Leiostomus xanthurus) (Pisces) and their daily ration. Vie Et Milieu-Life Environ 45:49–59Google Scholar
  48. Findlay S, Tenore KR (1982) Effect of a free-living marine nematode (Diplolaimella chitwoodi) on detrital carbon mineralization. Mar Ecol Prog Ser 8:161–166.  https://doi.org/10.3354/meps008161 Google Scholar
  49. Flach E, Muthumbi A, Heip C (2002) Meiofauna and macrofauna community structure in relation to sediment composition at the Iberian margin compared to the Goban Spur (NE Atlantic). Prog Oceanogr 52:433–457.  https://doi.org/10.1016/S0079-6611(02)00018-6 Google Scholar
  50. Flint HC, Copley JTP, Ferrero TJ, Van Dover CL (2006) Patterns of nematode diversity at hydrothermal vents on the East Pacific Rise. Cah Biol Mar 47:365–370Google Scholar
  51. Fonseca G, Muthumbi AW, Vanreusel A (2007) Species richness of the genus Molgolaimus (Nematoda) from local to ocean scale along continental slopes. Mar Ecol 28:446–459.  https://doi.org/10.1111/j.1439-0485.2007.00202.x Google Scholar
  52. Fonseca G, Soltwedel T (2007) Deep-sea meiobenthic communities underneath the marginal ice zone off Eastern Greenland. Polar Biol 30:607–618.  https://doi.org/10.1007/s00300-006-0220-8 Google Scholar
  53. Fonseca G, Soltwedel T (2009) Regional patterns of nematode assemblages in the Arctic deep seas. Polar Biol 32:1345–1357.  https://doi.org/10.1007/s00300-009-0631-4 Google Scholar
  54. Fonseca G, Soltwedel T, Vanreusel A, Lindegarth M (2010) Variation in nematode assemblages over multiple spatial scales and environmental conditions in Arctic deep seas. Prog Oceanogr 84:174–184.  https://doi.org/10.1016/j.pocean.2009.11.001 Google Scholar
  55. Fujii T, Kilgallen NM, Rowden AA, Jamieson AJ (2013) Deep sea amphipod community structure across abyssal to hadal depths in the Peru–Chile and Kermadec trenches. Mar Ecol Prog Ser 492:125–138Google Scholar
  56. Galéron J, Myriam S, Marie-Laure M, Alain D (2000) Variation in structure and biomass of the benthic communities at three contrasting sites in the tropical Northeast Atlantic. Mar Ecol Prog Ser 197:121–137Google Scholar
  57. Gallucci F, Fonseca G, Soltwedel T (2008a) Effects of megafauna exclusion on nematode assemblages at a deep-sea site. Deep-Sea Res Part I-Oceanogr Res Pap 55:332–349.  https://doi.org/10.1016/j.dsr.2007.12.001 Google Scholar
  58. Gallucci F, Moens T, Vanreusel A, Fonseca G (2008b) Active colonisation of disturbed sediments by deep-sea nematodes: evidence for the patch mosaic model. Mar Ecol Prog Ser 367:173–183.  https://doi.org/10.3354/meps07537 Google Scholar
  59. Gallucci F, Moens T, Fonseca G (2009) Small-scale spatial patterns of meiobenthos in the Arctic deep sea. Mar Biodivers 39:9–25Google Scholar
  60. Gambi C, Vanreusel A, Danovaro R (2003) Biodiversity of nematode assemblages from deep-sea sediments of the Atacama Slope and Trench (South Pacific Ocean). Deep-Sea Res I Oceanogr Res Pap 50:103–117.  https://doi.org/10.1016/S0967-0637(02)00143-7 Google Scholar
  61. Gambi C, Danovaro R (2006) A multiple-scale analysis of metazoan meiofaunal distribution in the deep Mediterranean Sea. Deep-Sea Res Part I-Oceanogr Res Pap 53:1117–1134.  https://doi.org/10.1016/j.dsr.2006.05.003 Google Scholar
  62. Gambi C, Pusceddu A, Benedetti-Cecchi L, Danovaro R (2014) Species richness, species turnover and functional diversity in nematodes of the deep Mediterranean Sea: searching for drivers at different spatial scales. Glob Ecol Biogeogr 23:24–39.  https://doi.org/10.1111/geb.12094 Google Scholar
  63. Gambi C, Danovaro R (2016) Biodiversity and life strategies of deep-sea meiofauna and nematode assemblages in the Whittard Canyon (Celtic margin, NE Atlantic Ocean). Deep Sea Research Part I: Oceanographic Research Papers 108:13–22.  https://doi.org/10.1016/j.dsr.2015.12.001
  64. Garcia R, Koho KA, De Stigter HC, Epping E, Koning E, Thomsen L (2007) Distribution of meiobenthos in the Nazare canyon and adjacent slope (western Iberian Margin) in relation to sedimentary composition. Mar Ecol Prog Ser 340:207–220.  https://doi.org/10.3354/meps340207 Google Scholar
  65. García R, van Oevelen D, Soetaert K, Thomsen L, De Stigter HC, Epping E (2008) Deposition rates, mixing intensity and organic content in two contrasting submarine canyons. Prog Oceanogr 76:192–215.  https://doi.org/10.1016/j.pocean.2008.01.001 Google Scholar
  66. George KH, Veit-Kohler G, Martinez Arbizy P, Seifried S, Rose A, Willen E, Brohldick K, Corgosinho PH, Drewes J, Menzel L, Moura G, Schminke HK (2014) Community structure and species diversity of Harpacticoida (Crustacea: Copepoda) at two sites in the deep sea of the Angola Basin (Southeast Atlantic). Org Divers Evol 14:57–73.  https://doi.org/10.1007/s13127-013-0154-2 Google Scholar
  67. Giere O (2009) Meiobenthology. The microscopic motile fauna of aquatic sediments. Springer-Verlag, BerlinGoogle Scholar
  68. Gollner S, Zekely J, Van Dover CL, Govenar B, Le Bris N, Nemeschkal HL, Bright M (2006) Benthic copepod communities associated with tubeworm and mussel aggregations on the East Pacific Rise. Cah Biol Mar 47:397–402Google Scholar
  69. Gollner S, Zekely J, Govenar B, Le Bris N, Nemeschkal HL, Fisher CR, Bright M (2007) Tubeworm-associated permanent meiobenthic communities from two chemically different hydrothermal vent sites on the East Pacific Rise. Mar Ecol Prog Ser 337:39–49.  https://doi.org/10.3354/meps337039 Google Scholar
  70. Gollner S, Riemer B, Arbizu PM, Le Bris N, Bright M (2010) Diversity of Meiofauna from the 9 degrees 50 ' N East Pacific Rise across a Gradient of Hydrothermal Fluid Emissions. PLoS One 5:14.  https://doi.org/10.1371/journal.pone.0012321 Google Scholar
  71. Gollner S, Miljutina M, Bright M (2013) Nematode succession at deep-sea hydrothermal vents after a recent volcanic eruption with the description of two dominant species. Org Divers Evol 13:349–371.  https://doi.org/10.1007/s13127-012-0122-2 Google Scholar
  72. Gollner S, Govenar B, Fisher CR, Bright M (2015a) Size matters at deep-sea hydrothermal vents: different diversity and habitat fidelity patterns of meio- and macrofauna. Mar Ecol Prog Ser 520:57–66.  https://doi.org/10.3354/meps11078 PubMedPubMedCentralGoogle Scholar
  73. Gollner S, Govenar B, Martinez Arbizu P, Mills S, Le Bris N, Meinbauer M, Shank TM, Bright M (2015b) Differences in recovery between deep-sea hydrothermal vent and vent-proximate communities after a volcanic eruption. Deep-Sea Res Part I-Oceanogr Res Pap 106:167–182.  https://doi.org/10.1016/j.dsr.2015.10.008 Google Scholar
  74. Górska B, Grzelak K, Kotwicki L, Hasemann C, Schewe I, Soltwedel T, Włodarska-Kowalczuk M (2014) Bathymetric variations in vertical distribution patterns of meiofauna in the surface sediments of the deep Arctic ocean (HAUSGARTEN, Fram strait). Deep-Sea Res I Oceanogr Res Pap 91:36–49.  https://doi.org/10.1016/j.dsr.2014.05.010 Google Scholar
  75. Green AS, Chandler GT (1994) Meiofaunal bioturbation effects on the partitioning of sediment-associated cadmium. J Exp Mar Biol Ecol 180:59–70Google Scholar
  76. Grego M, Riedel B, Stachowitsch M, De Troch M (2014) Meiofauna winners and losers of coastal hypoxia: case study harpacticoid copepods. Biogeosciences 11:281–292.  https://doi.org/10.5194/bg-11-281-2014 Google Scholar
  77. Grove SL, Probert PK, Berkenbusch K, Nodder SD (2006) Distribution of bathyal meiofauna in the region of the Subtropical Front, Chatham Rise, south-west Pacific. J Exp Mar Biol Ecol 330:342–355.  https://doi.org/10.1016/j.jembe.2005.12.038 Google Scholar
  78. Guidi-Guilvard LD, Dallot S (2014) Metazoan Meiobenthos temporal fluctuations in the deep NW Mediterranean Sea (DYFAMED-BENTHOS 1993-1995). Contribution of spatial variability and disturbance. Deep-Sea Res Part I-Oceanogr Res Pap 92:127–140.  https://doi.org/10.1016/j.dsr.2014.07.003 Google Scholar
  79. Guilini K, Soltwedel T, van Oevelen D, Vanreusel A (2011) Deep-Sea Nematodes Actively Colonise Sediments, Irrespective of the Presence of a Pulse of Organic Matter: Results from an In-Situ Experiment. PLoS One 6:e18912.  https://doi.org/10.1371/journal.pone.0018912 PubMedPubMedCentralGoogle Scholar
  80. Guilini K, Levin LL, Vanreusel A (2012) Cold seep and oxygen minimum zone associated sources of margin heterogeneity affect benthic assemblages, diversity and nutrition at the Cascadian margin (NE Pacific Ocean). Prog Oceanogr 96:77–92Google Scholar
  81. Guilini K, Veit-Köhler G, Troch MD, Gansbeke DV, Vanreusel A (2013) Latitudinal and temporal variability in the community structure and fatty acid composition of deep-sea nematodes in the Southern Ocean. Prog Oceanogr 110:80–92.  https://doi.org/10.1016/j.pocean.2013.01.002 Google Scholar
  82. Gutt J, Barrat I, Domac E, d’Udeke d’Acoz C, Dimmlerrrrr W, Gremare A, Heilmayer O, Isla E, Janussen D (2011) Biodiversity change after climate-induced ice-shelf collapse in the Antarctic. Deep-Sea Res Part II-Top Stud Oceanogr 58:74–83.  https://doi.org/10.1016/j.dsr2.2010.05.024 Google Scholar
  83. Gutzmann E, Martínez Arbizu P, Rose A, Veit-Köhler G (2004) Meiofauna communities along an abyssal depth gradient in the Drake Passage. Deep-Sea Res II Top Stud Oceanogr 51:1617–1628.  https://doi.org/10.1016/j.dsr2.2004.06.026 Google Scholar
  84. Harris PT, Whiteway T (2011) Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins. Mar Geol 285:69–86.  https://doi.org/10.1016/j.margeo.2011.05.008 Google Scholar
  85. Hasemann C, Soltwedel T (2011) Small-Scale Heterogeneity in Deep-Sea Nematode Communities around Biogenic Structures. PLoS One 6:e29152.  https://doi.org/10.1371/journal.pone.0029152 PubMedPubMedCentralGoogle Scholar
  86. Hauquier F, Ingels J, Gutt J, Raes M, Vanreusel A (2011) Characterisation of the Nematode Community of a Low-Activity Cold Seep in the Recently Ice-Shelf Free Larsen B Area, Eastern Antarctic Peninsula PloS ONE 6.  https://doi.org/10.1371/journal.pone.0022240
  87. Hauquier F, Durán Suja L, Gutt J, Veit-Köhler G, Vanreusel A (2015) Different oceanographic regimes in the vicinity of the Antarctic Peninsula reflected in benthic nematode communities. PLoS One 10:e0137527.  https://doi.org/10.1371/journal.pone.0137527 PubMedPubMedCentralGoogle Scholar
  88. Heip C, Huys R, Alkemade R (1992) Community structure and functional roles of meiofauna in the North Sea. Neth J Aquat Ecol 26:31–41Google Scholar
  89. Heip CHR et al (2001) The role of the benthic biota in sedimentary metabolism and sediment-water exchange processes in the Goban Spur area (NE Atlantic). Deep-Sea Res Part II-Top Stud Oceanogr 48:3223–3243.  https://doi.org/10.1016/s0967-0645(01)00038-8 Google Scholar
  90. Hendelberg M, Jensen P (1993) Vertical-distribution of the nematode fauna in a coastal sediment influenced by seasonal hypoxia in the bottom water. Ophelia 37:83–94Google Scholar
  91. Hoste E, Vanhove S, Schewe I, Soltwedel T, Vanreusel A (2007) Spatial and temporal variations in deep-sea meiofauna assemblages in the Marginal Ice Zone of the Arctic Ocean. Deep-Sea Res Part I-Oceanogr Res Pap 54:109–129.  https://doi.org/10.1016/j.dsr.2006.09.007 Google Scholar
  92. Hughes DJ, Gage JD (2004) Benthic metazoan biomass, community structure and bioturbation at three contrasting deep-water sites on the northwest European continental margin. Prog Oceanogr 63:29–55.  https://doi.org/10.1016/j.pocean.2004.09.002 Google Scholar
  93. Ingels J, Kiriakoulakis K, Wolff GA, Vanreusel A (2009) Nematode diversity and its relation to the quantity and quality of sedimentary organic matter in the deep Nazaré Canyon, Western Iberian Margin. Deep-Sea Res I Oceanogr Res Pap 56:1521–1539.  https://doi.org/10.1016/j.dsr.2009.04.010 Google Scholar
  94. Ingels J, Billett DSM, Kiriakoulakis K, Wolff GA, Vanreusel A (2011a) Structural and functional diversity of Nematoda in relation with environmental variables in the Setúbal and Cascais canyons, Western Iberian Margin. Deep-Sea Res II Top Stud Oceanogr 58:2354–2368.  https://doi.org/10.1016/j.dsr2.2011.04.002 Google Scholar
  95. Ingels J, Tchesunov AV, Vanreusel A (2011b) Meiofauna in the Gollum Channels and the Whittard Canyon, Celtic Margin-how local environmental conditions shape nematode sructure and function. PLoS One 6:1–15.  https://doi.org/10.1371/journal.pone.0020094 Google Scholar
  96. Ingels J, Vanreusel A (2013) The importance of different spatial scales in determining structure and function of deep-sea infauna communities. Biogeosci Discuss 10:195–232Google Scholar
  97. Ingels J, Vanreusel A, Romano C, Coenjaerts J, Mar Flexas M, Zúñiga D, Martin D (2013) Spatial and temporal infaunal dynamics of the Blanes submarine canyon-slope system (NW Mediterranean); changes in nematode standing stocks, feeding types and gender-life stage ratios. Prog Oceanogr 118:159–174.  https://doi.org/10.1016/j.pocean.2013.07.021
  98. Ingham RE, Trofymow JA, Ingham ER, Coleman DC (1985) Interactions of Bacteria, Fungi, and their Nematode Grazers: Effects on Nutrient Cycling and Plant Growth. Ecol Monogr 55:119–140.  https://doi.org/10.2307/1942528 Google Scholar
  99. Ingole BS, Ansari ZA, Rathod V, Rodrigues N (2000) Response of meiofauna to immediate benthic disturbance in the Central Indian Ocean Basin. Mar Georesour Geotechnol 18:263–272.  https://doi.org/10.1080/10641190009353794 Google Scholar
  100. Ingole BS, Goltekar R, Gonsalves S, Ansari ZA (2005) Recovery of deep-sea meiofauna after artificial disturbance in the Central Indian Basin. Mar Georesour Geotechnol 23:253–266.  https://doi.org/10.1080/10641190500446540 Google Scholar
  101. Itoh M, Kawamura K, Kitahashi T, Kojima S, Katagiri H, Shimanaga M (2011) Bathymetric patterns of meiofaunal abundance and biomass associated with the Kuril and Ryukyu trenches, western North Pacific Ocean. Deep-Sea Res Part I-Oceanogr Res Pap 58:86–97.  https://doi.org/10.1016/j.dsr.2010.12.004 Google Scholar
  102. Judd A, Jukes V, Leddra M (2002) MAGIC: A GIS database of marine gas seeps and seep indicators. Geol Geofiz 43:599–604Google Scholar
  103. Kalogeropoulou V, Keklikoglou K, Lampadariou N (2015) Functional diversity patterns of abyssal nematodes in the Eastern Mediterranean: A comparison between cold seeps and typical deep sea sediments. J Sea Res 98:57–72.  https://doi.org/10.1016/j.seares.2014.11.003 Google Scholar
  104. Karlson AML, Niemand C, Savage C, Pilditch CA (2016) Density of Key-Species Determines Efficiency of Macroalgae Detritus Uptake by Intertidal Benthic Communities. PLoS One 11:22.  https://doi.org/10.1371/journal.pone.0158785 Google Scholar
  105. Kitahashi T, Kawamura K, Veit-Köhler G, Danovaro R, Tietjen J, Kojima S, Shimanaga M (2012) Assemblages of Harpacticoida (Crustacea: Copepoda) from the Ryukyu and Kuril Trenches, north-west Pacific Ocean. J Mar Biol Assoc U K 92:275–286.  https://doi.org/10.1017/S0025315411001536 Google Scholar
  106. Kitahashi T, Kawamura K, Kojima S, Shimanaga M (2013) Assemblages gradually change from bathyal to hadal depth: A case study on harpacticoid copepods around the Kuril Trench (north-west Pacific Ocean). Deep-Sea Res Part I-Oceanogr Res Pap 74:39–47.  https://doi.org/10.1016/j.dsr.2012.12.010 Google Scholar
  107. Kitahashi T, Jenkins RG, Nomaki H, Shimanaga M, Fujikura K, Kojima S (2014a) Effect of the 2011 Tohoku Earthquake on deep-sea meiofaunal assemblages inhabiting the landward slope of the Japan Trench. Mar Geol 358:128–137.  https://doi.org/10.1016/j.margeo.2014.05.004 Google Scholar
  108. Kitahashi T, Kawamura K, Kojima S, Shimanaga M (2014b) Bathymetric patterns of α and β diversity of harpacticoid copepods at the genus level around the Ryukyu Trench, and turnover diversity between trenches around Japan. Prog Oceanogr 123:54–63.  https://doi.org/10.1016/j.pocean.2014.02.007 Google Scholar
  109. Kitahashi T, Watanabe H, Ikehara K, Jenkins RG, Kojima S, Shimanaga M (2016) Deep-sea meiofauna off the Pacific coast of Tohoku and other trench slopes around Japan: a comparative study before and after the 2011 off the Pacific coast of Tohoku Earthquake. J Oceanogr 72:129–139.  https://doi.org/10.1007/s10872-015-0323-3 Google Scholar
  110. Kristensen E, Kostka JE (2013) Macrofaunal Burrows and Irrigation in Marine Sediment: Microbiological and Biogeochemical Interactions. Interactions Between Macro- and Microorganisms in Marine Sediments American Geophysical Union doi: https://doi.org/10.1029/CE060p0125
  111. Kröncke I, Turkay M, Fiege D (2003) Macrofauna communities in the Eastern Mediterranean deep sea. Mar Ecology-Pubblicazioni Della Stazione Zoologica Di Napoli I 24:193–216.  https://doi.org/10.1046/j.0173-9565.2003.00825.x Google Scholar
  112. Lambshead PJD, Ferrero TJ, Wollf GA (1995) Comparison of the vertical-distribution of nematodes from 2 contrasting abyssal sites in the northeast Atlantic subject to different seasonal inputs of phytodetritus. Int Rev Gesamten Hydrobiol 80:327–331.  https://doi.org/10.1002/iroh.19950800219 Google Scholar
  113. Lambshead PJD, Tietjen J, Ferrero T, Jensen P (2000) Latitudinal diversity gradients in the deep sea with special reference to North Atlantic nematodes. Mar Ecol Prog Ser 194:159–167.  https://doi.org/10.3354/meps194159 Google Scholar
  114. Lambshead PJD, Tietjen J, Glover A, Ferrero T, Thistle D, Gooday AJ (2001) Impact of large-scale natural physical disturbance on the diversity of deep-sea North Atlantic nematodes. Mar Ecol Prog Ser 214:121–126.  https://doi.org/10.3354/meps214121 Google Scholar
  115. Lambshead PJD, Brown CJ, Ferrero TJ, Mitchell NJ, Smith CR, Hawkins LE, Tietjen J (2002) Latitudinal diversity patterns of deep-sea marine nematodes and organic fluxes: a test from the central equatorial Pacific. Mar Ecol Prog Ser 236:129–135.  https://doi.org/10.3354/meps236129 Google Scholar
  116. Lambshead PJD, Boucher G (2003) Marine nematode deep-sea biodiversity: hyperdiverse or hype? J Biogeogr 30:475–485Google Scholar
  117. Lambshead PJD, Brown CJ, Ferrero TJ, Hawkins LE, Smith CR, Mitchell NJ (2003) Biodiversity of nematode assemblages from the region of the Clarion-Clipperton Fracture Zone, an area of commercial mining interest. BMC Ecol 3(1)  https://doi.org/10.1186/1472-6785-3-1
  118. Lampadariou N, Tselepides A (2006) Spatial variability of meiofaunal communities at areas of contrasting depth and productivity in the Aegean Sea (NE Mediterranean). Prog Oceanogr 69:19–36.  https://doi.org/10.1016/j.pocean.2006.02.013 Google Scholar
  119. Lampadariou N, Tselepides A, Hatziyanni E (2009) Deep-sea meiofaunal and foraminiferal communities along a gradient of primary productivity in the eastern Mediterranean Sea. Sci Mar 73:337–345.  https://doi.org/10.3989/scimar.2009.73n2337 Google Scholar
  120. Lampadariou N, Kalogeropoulou V, Sevastou K, Keklikoglou K, Sarrazin J (2013) Influence of chemosynthetic ecosystems on nematode community structure and biomass in the deep eastern Mediterranean Sea. Biogeosciences 10:5381–5398.  https://doi.org/10.5194/bg-10-5381-2013 Google Scholar
  121. Landers SC, Nichols AC, Barron NK, Schimmer CA, Tao R, Yu K, Stewart PM, Olafsson E (2014) Nematode and copepod diversity (2012) from Louisiana near the Deepwater Horizon oil spill. Proc Biol Soc Wash 127:47–57Google Scholar
  122. Leduc D, Probert PK, Berkenbusch K, Nodder SD, Pilditch CA (2010a) Abundance of small individuals influences the effectiveness of processing techniques for deep-sea nematodes. Deep-Sea Res Part I-Oceanogr Res Pap 57:1363–1371.  https://doi.org/10.1016/j.dsr.2010.07.002 Google Scholar
  123. Leduc D, Probert PK, Nodder SD (2010b) Influence of mesh size and core penetration on estimates of deep-sea nematode abundance, biomass, and diversity. Deep-Sea Res I Oceanogr Res Pap 57:1354–1362.  https://doi.org/10.1016/j.dsr.2010.06.005 Google Scholar
  124. Leduc D, Rowden AA, Bowden DA, Nodder SD, Probert PK, Pilditch CA, Duineveld GCA, Witbaard R (2012a) Nematode beta diversity on the continental slope of New Zealand: spatial patterns and environmental drivers. Mar Ecol Prog Ser 454:37–52.  https://doi.org/10.3354/meps09690 Google Scholar
  125. Leduc D, Rowden AA, Bowden DA, Probert PK, Pilditch CA, Nodder SD (2012b) Unimodal relationship between biomass and species richness of deep-sea nematodes: implications for the link between productivity and diversity. Mar Ecol Prog Ser 454:53–64.  https://doi.org/10.3354/meps09609 Google Scholar
  126. Leduc D, Rowden AA, Probert PK, Pilditch CA, Nodder SD, Vanreusel A, Duineveld GCA, Witbaard R (2012c) Further evidence for the effect of particle-size diversity on deep-sea benthic biodiversity. Deep-Sea Res Part I-Oceanogr Res Pap 63:164–169.  https://doi.org/10.1016/j.dsr.2011.10.009 Google Scholar
  127. Leduc D, Pilditch CA (2013) Effect of a physical disturbance event on deep-sea nematode community structure and ecosystem function. J Exp Mar Biol Ecol 440:35–41.  https://doi.org/10.1016/j.jembe.2012.11.015 Google Scholar
  128. Leduc D, Rowden AA, Pilditch CA, Maas EW, Probert PK (2013) Is there a link between deep-sea biodiversity and ecosystem function? Mar Ecol 34:334–344.  https://doi.org/10.1111/maec.12019 Google Scholar
  129. Leduc D, Rowden AA, Nodder SD, Berkenbusch K, Probert PK, Hadfield MG (2014) Unusually high food availability in Kaikoura Canyon linked to distinct deep-sea nematode community. Deep Sea Res II 104:310–318Google Scholar
  130. Leduc D, Nodder SD, Berkenbusch K, Rowden AA (2015) Effect of core surface area and sediment depth on estimates of deep-sea nematode genus richness and community structure. Mar Biodivers 45:349–356.  https://doi.org/10.1007/s12526-014-0271-y Google Scholar
  131. Leduc D, Pilditch CA, Nodder SD (2016a) Partitioning the contributions of mega-, macro- and meiofauna to benthic metabolism on the upper continental slope of New Zealand: Potential links with environmental factors and trawling intensity. Deep-Sea Res Part I-Oceanogr Res Pap 108:1–12.  https://doi.org/10.1016/j.dsr.2015.12.003 Google Scholar
  132. Leduc D, Rowden AA, Glud RN, Wenzhofer F, Kitazato H, Clark MR (2016b) Comparison between infaunal communities of the deep floor and edge of the Tonga Trench: Possible effects of differences in organic matter supply. Deep-Sea Res Part I-Oceanogr Res Pap 116:264–275.  https://doi.org/10.1016/j.dsr.2015.11.003 Google Scholar
  133. Lee HJ, Gerdes D, Vanhove S, Vincx M (2001) Meiofauna response to iceberg disturbance on the Antarctic continental shelf at Kapp Norvegia (Weddell Sea). Polar Biol 24:926–933Google Scholar
  134. Levin LA (2005) Ecology of cold seep sediments: interactions of fauna with flow, chemistry and microbes. In: Gibson RN, Atkinson RJA, Gordon JDM (eds) Oceanography and Marine Biology - an Annual Review, Oceanography and Marine Biology, vol 43. Crc Press-Taylor & Francis Group, Boca Raton, pp 1–46.  https://doi.org/10.1201/9781420037449.ch1 Google Scholar
  135. Levin LA, Mendoza GF (2007) Community structure and nutrition of deep methane-seep macrobenthos from the North Pacific (Aleutian) Margin and the Gulf of Mexico (Florida Escarpment). Marine Ecology-an Evolutionary Perspective 28:131–151.  https://doi.org/10.1111/j.1439-0485.2006.00131.x Google Scholar
  136. Limén H, Levesque C, Kim Juniper S (2007) POM in macro−/meiofaunal food webs associated with three flow regimes at deep-sea hydrothermal vents on Axial Volcano, Juan de Fuca Ridge. Mar Biol 153:129–139.  https://doi.org/10.1007/s00227-007-0790-1 Google Scholar
  137. Lin RC, Huang DY, Guo YQ, Chang Y, Cao YK, Wang JJ (2014) Abundance and distribution of meiofauna in the Chukchi Sea. Acta Oceanol Sin 33:90–94.  https://doi.org/10.1007/s13131-014-0493-7 Google Scholar
  138. Lins L, Guilini K, Veit-Kohler G, Hauquier F, Alves RMS, Esteves AM, Vanreusel A (2014) The link between meiofauna and surface productivity in the Southern Ocean. Deep-Sea Res Part II-Top Stud Oceanogr 108:60–68.  https://doi.org/10.1016/j.dsr2.2014.05.003 Google Scholar
  139. Lins L, da Silva MC, Hauquier F, Esteves AM, Vanreusel A (2015) Nematode community composition and feeding shaped by contrasting productivity regimes in the Southern Ocean. Prog Oceanogr 134:356–369.  https://doi.org/10.1016/j.pocean.2015.03.006 Google Scholar
  140. Lins L, Leliaert F, Riehl T, Ramalho SP, Cordova EA, Esteves AM, Vanreusel A (2016) Species variability and connectivity in the deep sea: evaluating effects of spatial heterogeneity and hydrodynamics. Biogeosci Discuss 2016:1–33.  https://doi.org/10.5194/bg-2016-134 Google Scholar
  141. Liu XS, Xu M, Zhang JH, Liu D, Li X (2015) Community structure and biodiversity of free-living marine nematodes in the northern South China Sea. Acta Oceanol Sin 34:77–85.  https://doi.org/10.1007/s13131-014-0549-8 Google Scholar
  142. Lorenzen S, Prein M, Valentin C (1987) Mass aggregations of the free-living marine nematode Pontonema vulgare (Oncholaimidae) in organically polluted fjords. Mar Ecol Prog Ser 37:27–34.  https://doi.org/10.3354/meps037027 Google Scholar
  143. Martín J, Puig P, Masqué P, Palanques A, Sánchez-Gómez A (2014) Impact of bottom trawling on deep-sea sediment properties along the flanks of a submarine canyon. PLoS One 9:1–11.  https://doi.org/10.1371/journal.pone.0104536 Google Scholar
  144. Meadows A, Meadows PS (1994) Bioturbation in deep-sea pacific sediments. J Geol Soc 151:361–375.  https://doi.org/10.1144/gsjgs.151.2.0361 Google Scholar
  145. Menzel L, George KH, Arbizu PM (2011) Submarine ridges do not prevent large-scale dispersal of abyssal fauna: A case study of Mesocletodes (Crustacea, Copepoda, Harpacticoida). Deep-Sea Res I Oceanogr Res Pap 58:839–864.  https://doi.org/10.1016/j.dsr.2011.05.008 Google Scholar
  146. Mevenkamp L, Van Campenhout J, Vanreusel A (2016) Experimental evidence for selective settlement of meiofauna from two distinct environments after sediment suspension. J Exp Mar Biol Ecol 474:195–203.  https://doi.org/10.1016/j.jembe.2015.10.005 Google Scholar
  147. Miljutin D, Miljutina M, Messie M (2015a) Changes in abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific. Deep-Sea Res Part I-Oceanogr Res Pap 106:126–135.  https://doi.org/10.1016/j.dsr.2015.10.009 Google Scholar
  148. Miljutin D, Miljutina M, Messie M (2015b) Changes in the abundance and community structure of nematodes from the abyssal polymetallic nodule field, Tropical Northeast Pacific. Deep-Sea Res I 106:126–135Google Scholar
  149. Miljutin DM, Miljutina MA, Arbizu PM, Galeron J (2011) Deep-sea nematode assemblage has not recovered 26 years after experimental mining of polymetallic nodules (Clarion-Clipperton Fracture Zone, Tropical Eastern Pacific). Deep-Sea Res Part I-Oceanogr Res Pap 58:885–897.  https://doi.org/10.1016/j.dsr.2011.06.003 Google Scholar
  150. Miljutin DM, Miljutina MA, Mokievsky VO, Tchesunov AV (2012) Benthic meiofaunal density and community composition in the deep White Sea and their temporal variations. Polar Biol 35:1837–1850.  https://doi.org/10.1007/s00300-012-1226-z Google Scholar
  151. Miljutin DM, Miljutina MA, Tchesunov AV, Mokievsky VO (2014) Nematode assemblages from the Kandalaksha Depression (White Sea, 251–288 m water depth). Helgol Mar Res 68:99–111.  https://doi.org/10.1007/s10152-013-0371-2 Google Scholar
  152. Miljutina MA, Miljutin DM, Mahatma R, Galeron J (2010) Deep-sea nematode assemblages of the Clarion-Clipperton Nodule Province (Tropical North-Eastern Pacific). Mar Biodivers 40:1–15.  https://doi.org/10.1007/s12526-009-0029-0
  153. Moens T, Vanhove S, De Mesel I, Kelemen B, Janssens T, Dewicke A, Vanreusel A (2007) Carbon sources of Antarctic nematodes as revealed by natural carbon isotope ratios and a pulse-chase experiment. Polar Biol 31:1–13.  https://doi.org/10.1007/s00300-007-0323-x Google Scholar
  154. Moens T et al (2014) Ecology of free-living marine nematodes. In: Schmidt-Rhaesa A (ed) Volume 2 Nematoda. De Gruyter, Berlin, Boston, pp 109–152Google Scholar
  155. Mokievskii VO, Udalov AA, Azovskii AI (2007) Quantitative distribution of meiobenthos in deep-water zones of the World Ocean. Oceanology 47:797–813.  https://doi.org/10.1134/s0001437007060057 Google Scholar
  156. Montagna PA, Blanchard GF, Dinet A (1995) Effect of production and biomass of intertidal microphytobenthos on meiofaunal grazing rates. J Exp Mar Biol Ecol 185:149–165.  https://doi.org/10.1016/0022-0981(94)00138-4 Google Scholar
  157. Montagna PA, Baguley JG, Cooksey C, Hartwell I, Hyde LJ, Hyland JL, Kalke RD, Kracker LM, Reuscher M, Rhodes AC (2013) Deep-sea benthic footprint of the Deepwater Horizon blowout. PLoS One 8:1–8.  https://doi.org/10.1371/journal.pone.0070540 Google Scholar
  158. Moodley L, Chen GT, Heip C, Vincx M (2000) Vertical distribution of meiofauna in sediments from contrasting sites in the Adriatic Sea: Clues to the role of abiotic versus biotic control. Ophelia 53:203–212Google Scholar
  159. Muthumbi AW, Vanreusel A, Duineveld G, Soetaert K, Vincx M (2004) Nematode Community Structure along the Continental Slope off the Kenyan Coast, Western Indian Ocean. Int Rev Hydrobiol 89:188–205.  https://doi.org/10.1002/iroh.200310689 Google Scholar
  160. Muthumbi A, Soetaert K, Vincx M (2011) Taxon-related diversity patterns from the continental shelf to slope: a case study on nematodes from the Western Indian Ocean. Mar Ecol 32:453–467Google Scholar
  161. Neira C, Sellanes J, Levin LA, Arntz WE (2001) Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Res Part I-Oceanogr Res Pap 48:2453–2472.  https://doi.org/10.1016/s0967-0637(01)00018-8 Google Scholar
  162. Neira C, King I, Mendoza G, Sellanes J, De Ley P, Levin LA (2013) Nematode community structure along a central Chile margin transect influenced by the oxygen minimum zone. Deep Sea Res I 78:1–15Google Scholar
  163. Netto SA, Gallucci F, Fonseca GFC (2005) Meiofauna communities of continental slope and deep-sea sites off SE Brazil. Deep-Sea Res I Oceanogr Res Pap 52:845–859.  https://doi.org/10.1016/j.dsr.2004.11.009 Google Scholar
  164. Nodder SD, Pilditch CA, Probert PK, Hall JA (2003) Variability in benthic biomass and activity beneath the Subtropical Front, Chatham Rise, SW Pacific Ocean. Deep-Sea Res I Oceanogr Res Pap 50:959–985.  https://doi.org/10.1016/s0967-0637(03)00094-3 Google Scholar
  165. Nomaki H, Mochizuki T, Kitahashi T, Nunoura T, Arai K, Toyofuku T, Tanaka G, Shinego S, Tasumi E, Fujikura K, Watanabe S (2016) Effects of mass sedimentation events after the 2011 off the Pacific coast of Tohoku Earthquake on benthic prokaryotes and meiofauna inhabiting the upper bathyal sediments. J Oceanogr 72:113–128.  https://doi.org/10.1007/s10872-015-0293-5 Google Scholar
  166. Olafsson E (2003) Do macrofauna structure meiofauna assemblages in marine soft-bottoms? A review of experimental studies. Vie Et Milieu-Life and Environment 53:249–265Google Scholar
  167. Olu-Le Roy K et al (2004) Cold seep communities in the deep eastern Mediterranean Sea: composition, symbiosis and spatial distribution on mud volcanoes. Deep-Sea Res I Oceanogr Res Pap 51:1915–1936.  https://doi.org/10.1016/j.dsr.2004.07.004 Google Scholar
  168. Olu K et al (2009) Influence of seep emission on the non-symbiont-bearing fauna and vagrant species at an active giant pockmark in the Gulf of Guinea (Congo–Angola margin). Deep-Sea Res II Top Stud Oceanogr 56:2380–2393.  https://doi.org/10.1016/j.dsr2.2009.04.017 Google Scholar
  169. Ott J, Bright M, Bulgheresi S (2004) Symbioses between marine nematodes and sulfur-oxidizing chemoautotrophic bacteria. Symbiosis 36:103–126Google Scholar
  170. Pape E et al (2011) Community structure and feeding preference of nematodes associated with methane seepage at the Darwin mud volcano (Gulf of Cádiz). Mar Ecol Prog Ser 438:71–83.  https://doi.org/10.3354/meps09278 Google Scholar
  171. Pape E, Bezerra TN, Jones DOB, Vanreusel A (2013a) Unravelling the environmental drivers of deep-sea nematode biodiversity and its relation with carbon mineralisation along a longitudinal primary productivity gradient. Biogeosciences 10:3127–3143.  https://doi.org/10.5194/bg-10-3127-2013 Google Scholar
  172. Pape E, Jones DOB, Manini E, Bezerra TN, Vanreusel A (2013b) Benthic-Pelagic Coupling: Effects on Nematode Communities along Southern European Continental Margins. PLoS One 8:14.  https://doi.org/10.1371/journal.pone.0059954 Google Scholar
  173. Pilditch CA, Leduc D, Nodder SD, Probert PK, Bowden DA (2015) Spatial patterns and environmental drivers of benthic infaunal community structure and ecosystem function on the New Zealand continental margin. N Z J Mar Freshw Res 49:224–246.  https://doi.org/10.1080/00288330.2014.995678 Google Scholar
  174. Pitcher T, Morato T, Hart PJB, Clark MR, Haggan N, Santos RS (2007) Seamounts: Ecology. Fisheries and Conservation, Blackwell Oxford UKGoogle Scholar
  175. Plum C, Gollner S, Martínez-Arbizu P, Bright M (2015) Diversity and composition of the copepod communities associated with megafauna around a cold seep in the Gulf of Mexico with remarks on species biogeography. Mar Biodivers 45:419–432.  https://doi.org/10.1007/s12526-014-0310-8 Google Scholar
  176. Portnova DA, Mokievsky VO, Haflidason H, Todt K (2014) Metazoan meiobenthos and nematode assemblages in the Nyegga Region of methane seepage (Norwegian Sea). Russ J Mar Biol 40:255–265.  https://doi.org/10.1134/S1063074014040075 Google Scholar
  177. Pusceddu A, Gambi C, Zeppilli D, Bianchelli S, Danovaro R (2009) Organic matter composition, metazoan meiofauna and nematode biodiversity in Mediterranean deep-sea sediments. Deep-Sea Res Part II-Top Stud Oceanogr 56:755–762.  https://doi.org/10.1016/j.dsr2.2008.10.012 Google Scholar
  178. Pusceddu A et al (2013) Major consequences of an intense dense shelf water cascading event on deep-sea benthic trophic conditions and meiofaunal biodiversity. Biogeosciences 10:2659–2670.  https://doi.org/10.5194/bg-10-2659-2013 Google Scholar
  179. Pusceddu A, Bianchelli S, Martin J, Puig P, Palanques A, Masque P, Danovaro R (2014) Chronic and intensive bottom trawling impairs deep-sea biodiversity and ecosystem functioning. Proc Natl Acad Sci U S A 111:8861–8866.  https://doi.org/10.1073/pnas.1405454111 PubMedPubMedCentralGoogle Scholar
  180. Pusceddu A et al (2016) Organic matter pools, C turnover and meiofaunal biodiversity in the sediments of the western Spitsbergen deep continental margin, Svalbard Archipelago. Deep-Sea Res Part I-Oceanogr Res Pap 107:48–58.  https://doi.org/10.1016/j.dsr.2015.11.004 Google Scholar
  181. Radziejewska T (2002) Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. Int Rev Hydrobiol 87:457–477.  https://doi.org/10.1002/1522-2632(200207)87:4<457::aid-iroh457>3.0.co;2-3 Google Scholar
  182. Raes M, Vanreusel A (2006) Microhabitat type determines the composition of nematode communities associated with sediment-clogged cold-water coral framework in the Porcupine Seabight (NE Atlantic). Deep-Sea Res Part I-Oceanogr Res Pap 53:1880–1894.  https://doi.org/10.1016/j.dsr.2006.08.012 Google Scholar
  183. Raes M, De Troch M, Ndaro SGM, Muthumbi A, Guilini K, Vanreusel A (2007) The structuring role of microhabitat type in coral degradation zones: a case study with marine nematodes from Kenya and Zanzibar. Coral Reefs 26:113–126Google Scholar
  184. Raes M, Rose A, Vanreusel A (2010) Response of nematode communities after large-scale ice-shelf collapse events in the Antarctic Larsen area. Glob Chang Biol 16:1618–1631.  https://doi.org/10.1111/j.1365-2486.2009.02137.x Google Scholar
  185. Ramalho SP, Adão H, Kiriakoulakis K, Wolff GA, Vanreusel A, Ingels J (2014) Temporal and spatial variation in the Nazaré Canyon (Western Iberian margin): Inter-annual and canyon heterogeneity effects on meiofauna biomass and diversity. Deep-Sea Res I Oceanogr Res Pap 83:102–114.  https://doi.org/10.1016/j.dsr.2013.09.010 Google Scholar
  186. Ramirez-Llodra E et al (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosciences 7:2851–2899.  https://doi.org/10.5194/bg-7-2851-2010 Google Scholar
  187. Renaud PE, Ambrose WG, Vanreusel A, Clough LM (2006) Nematode and macrofaunal diversity in central Arctic Ocean benthos. J Exp Mar Biol Ecol 330:297–306.  https://doi.org/10.1016/j.jembe.2005.12.035 Google Scholar
  188. Rex MA, Etter RJ, Morris JS et al (2006) Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar Ecol Prog Ser 317:1–8Google Scholar
  189. Rex MA, Etter RJ (2010) Deep - Sea Biodiversity: Pattern and Scale. Harvard University Press, CambridgeGoogle Scholar
  190. Robinson CA, Bernhard JM, Levin LA, Mendoza GF, Blanks JK (2004) Surficial hydrocarbon seep infauna from the Blake Ridge (Atlantic Ocean, 2150 m) and the Gulf of Mexico (690–2240 m). Mar Ecol 25:313–336.  https://doi.org/10.1111/j.1439-0485.2004.00034.x
  191. Rodrigues AM, Meireles S, Pereira T, Quintino V (2007) Spatial heterogeneity recognition in estuarine intertidal benthic macrofaunal communities: influence of sieve mesh-size and sampling depth. Hydrobiologia 587:37–50.  https://doi.org/10.1007/s10750-007-0684-8 Google Scholar
  192. Rohal M, Thistle D, Easton EE (2014) Meiofaunal abundances and faunal similarity on the continental rise off the coast of California. Deep-Sea Res I Oceanogr Res Pap 93:131–144.  https://doi.org/10.1016/j.dsr.2014.07.004 Google Scholar
  193. Román S, Vanreusel A, Romano C, Ingels J, Puig P, Company JB, Martin D (2016) High spatiotemporal variability in meiofaunal assemblages in Blanes Canyon (NW Mediterranean) subject to anthropogenic and natural disturbances. Deep-Sea Res Part I: Oceanogr Res Pap 117:70–83.  https://doi.org/10.1016/j.dsr.2016.10.004 Google Scholar
  194. Romano C, Coenjaerts J, Flexas MM, Zuniga D, Vanreusel A, Company JB, Martin D (2013) Spatial and temporal variability of meiobenthic density in the Blanes submarine canyon (NW Mediterranean). Prog Oceanogr 118:144–158.  https://doi.org/10.1016/j.pocean.2013.07.026
  195. Rose A A, Seifried S, Willen E, George KH, Veit-Kohler G, Brohldick K, Drewes J, Moura G, Martinez Arbizu P, Schminke HK (2005) A method for comparing within-core alpha diversity values from repeated multicorer samplings, shown for abyssal Harpacticoida (Crustacea: Copepoda) from the Angola Basin. Org Divers Evol 5:3–17.  https://doi.org/10.1016/j.ode.2004.10.001
  196. Rose A, Ingels J, Raes M, Vanreusel A, Arbizu PM (2015) Long-term iceshelf-covered meiobenthic communities of the Antarctic continental shelf resemble those of the deep sea. Mar Biodivers 45:743–762.  https://doi.org/10.1007/s12526-014-0284-6 Google Scholar
  197. Rosenzweig ML (1995) Species diversity in space and time. Species diversity in space and time. Cambridge University Press, The Pitt Building, Trumpington Street, Cambridge CB2 1RP, England; Cambridge University Press, 40 W. 20th Street, New York, New York 10011–4211, USA.  https://doi.org/10.1017/cbo9780511623387.002
  198. Rosli N, Leduc D, Rowden AA, Clark MR, Probert PK, Berkenbusch K, Neira C (2016) Differences in meiofauna communities with sediment depth are greater than habitat effects on the New Zealand continental margin: implications for vulnerability to anthropogenic disturbance. PeerJ 4:e2154.  https://doi.org/10.7717/peerj.2154 PubMedPubMedCentralGoogle Scholar
  199. Sandulli R, Miljutin D, Angeletti L, Taviani M (2015) Meiobenthos and nematode assemblages from different deep-sea habitats of the Strait of Sicily (Central Mediterranean Sea). Mediterranean Marine Science 16:402–412.  https://doi.org/10.12681/mms.1145
  200. Sarrazin J, Legendre P, de Busserolles F, Fabri M-C, Guilini K, Ivanenko VN, Morineaux M, Vanreusel A, Sarradin P-M (2015) Biodiversity patterns, environmental drivers and indicator species on a high-temperature hydrothermal edifice, Mid-Atlantic Ridge. Deep-Sea Res II Top Stud Oceanogr 121:177–192.  https://doi.org/10.1016/j.dsr2.2015.04.013 Google Scholar
  201. Schmidt C, Martínez Arbizu P (2015) Unexpectedly higher metazoan meiofauna abundances in the Kuril–Kamchatka Trench compared to the adjacent abyssal plains. Deep-Sea Res II Top Stud Oceanogr 111:60–75.  https://doi.org/10.1016/j.dsr2.2014.08.019 Google Scholar
  202. Schratzberger M, Lampadariou N, Somerfield P, Vandepitte L, Vanden Berghe E (2009) The impact of seabed disturbance on nematode communities: linking field and laboratory observations. Mar Biol 156:709–724.  https://doi.org/10.1007/s00227-008-1122-9 Google Scholar
  203. Sebastian S, Raes M, De Mesel I, Vanreusel A (2007) Comparison of the nematode fauna from the Weddell Sea abyssal plain with two North Atlantic abyssal sites. Deep-Sea Research Part II-Topical Studies in. Oceanography 54:1727–1736.  https://doi.org/10.1016/j.dsr2.2007.07.004 Google Scholar
  204. Sergeeva NG, Gulin MB (2007) Meiobenthos from active methane seepage area in NW Black Sea. Mar Ecol 28.  https://doi.org/10.1111/j.1439-0485.2006.00143.x
  205. Sergeeva NG, Mazlumyan SA, Lichtschlag A, Holtappels M (2014) Benthic protozoa and metazoa living under anoxic and sulfide conditions in the Black Sea: direct observations of actively moving Ciliophora and Nematoda. International. J Mar Sci 4Google Scholar
  206. Service SK, Feller RJ, Coull BC, Woods R (1992) Predation effect of three fish species and a shrimp on macrobenthos and meiobenthos in microcosms. Estuar Coast Shelf Sci 34:277–293.  https://doi.org/10.1016/S0272-7714(05)80084-8 Google Scholar
  207. Setoguchi Y, Nomaki H, Kitahashi T, Watanabe H, Inoue K, Ogawa N, Shimanaga M (2014) Nematode community composition in hydrothermal vent and adjacent non-vent fields around Myojin Knoll, a seamount on the Izu-Ogasawara Arc in the western North Pacific Ocean. Mar Biol 161:1775–1785.  https://doi.org/10.1007/s00227-014-2460-4 Google Scholar
  208. Sevastou K, Lampadariou N, Polymenakou PN, Tselepides A (2013) Benthic communities in the deep Mediterranean Sea: exploring microbial and meiofaunal patterns in slope and basin ecosystems. Biogeosciences 10:4861–4878.  https://doi.org/10.5194/bg-10-4861-2013 Google Scholar
  209. Shimanaga M, Kitazato H, Shirayama Y (2000) Seasonal patterns of vertical distribution between meiofaunal groups in relation to phytodetritus deposition in the bathyal Sagami Bay, central Japan. J Oceanogr 56:379–387.  https://doi.org/10.1023/a:1011120204419 Google Scholar
  210. Shimanaga M, Kitazato H, Shirayama Y (2004) Temporal patterns in diversity and species composition of deep-sea benthic copepods in bathyal Sagami Bay, central Japan. Mar Biol 144:1097–1110.  https://doi.org/10.1007/s00227-003-1273-7 Google Scholar
  211. Shimanaga M, Nomaki H, Suetsugu K, Murayama M, Kitazato H (2007) Standing stock of deep-sea metazoan meiofauna in the Sulu Sea and adjacent areas. Deep-Sea Res II Top Stud Oceanogr 54:131–144.  https://doi.org/10.1016/j.dsr2.2006.11.003 Google Scholar
  212. Singh R, Miljutin DM, Miljutina MA, Arbizu PM, Ingole BS (2014) Deep-sea nematode assemblages from a commercially important polymetallic nodule area in the Central Indian Ocean Basin. Mar Biol Res 10:906–916.  https://doi.org/10.1080/17451000.2013.866251 Google Scholar
  213. Singh R, Ingole BS (2016) Structure and function of nematode communities across the Indian western continental margin and its oxygen minimum zone. Biogeosciences 13:191–209.  https://doi.org/10.5194/bg-13-191-2016 Google Scholar
  214. Sinniger F et al (2016) Worldwide analysis of sedimentary DNA reveals major gaps in taxonomic knowledge of deep-sea benthos. Frontiers in Marine. Science 3:e00092.  https://doi.org/10.3389/fmars.2016.00092 Google Scholar
  215. Soetaert K, Muthumbi A, Heip C (2002) Size and shape of ocean margin nematodes: morphological diversity and depth-related patterns. Mar Ecol Prog Ser 242:179–193.  https://doi.org/10.3354/meps242179 Google Scholar
  216. Soltwedel T (2000) Metazoan meiobenthos along continental margins: a review. Prog Oceanogr 46:59–84.  https://doi.org/10.1016/s0079-6611(00)00030-6 Google Scholar
  217. Soltwedel T, Miljutina M, Mokievsky V, Thistle D, Vopel K (2003) The meiobenthos of the molloy deep (5 600 m), Fram Strait, Arctic Ocean. Vie Et Milieu-Life and Environment 53:1–13Google Scholar
  218. Soltwedel T, Hasemann C, Queric NV, von Juterzenka K (2005a) Gradients in activity and biomass of the small benthic biota along a channel system in the deep Western Greenland Sea. Deep-Sea Res Part I-Oceanogr Res Pap 52:815–835.  https://doi.org/10.1016/j.dsr.2004.11.011 Google Scholar
  219. Soltwedel T, Portnova D, Kolar I, Mokievsky V, Schewe I (2005b) The small-sized benthic biota of the Håkon Mosby Mud Volcano (SW Barents Sea slope). J Mar Syst 55:271–290.  https://doi.org/10.1016/j.jmarsys.2004.09.001
  220. Somerfield PJ, Cochrane SJ, Dahle S, Pearson TH (2006) Free-living nematodes and macrobenthos in a high-latitude glacial fjord. J Exp Mar Biol Ecol 330:284–296.  https://doi.org/10.1016/j.jembe.2005.12.034 Google Scholar
  221. Sommer S, Pfannkuche O (2000) Metazoan meiofauna of the deep Arabian Sea: standing stocks, size spectra and regional variability in relation to monsoon induced enhanced sedimentation regimes of particulate organic matter. Deep-Sea Res II Top Stud Oceanogr 47:2957–2977.  https://doi.org/10.1016/S0967-0645(00)00054-0 Google Scholar
  222. Sommer S, Gutzmann E, Ahlrichs W, Pfannkuche O (2003) Rotifers colonising sediments with shallow gas hydrates. Naturwissenschaften 90:273–276.  https://doi.org/10.1007/s00114-003-0423-6 PubMedGoogle Scholar
  223. Sommer S, Gutzmann E, Pfannkuche O (2007) Sediments hosting gas hydrates: oases for metazoan meiofauna. Mar Ecol Prog Ser 337:27–37.  https://doi.org/10.3354/meps337027 Google Scholar
  224. Thiel H (1966) Quantitative studies on the meiofauna of the deep sea bottom (Preliminary result of the Meteor expedition in the Indian Ocean) 6th Marine Biology Symposium: Microfauna and mtcroflora of the sea, Bremerhaven, West Ger. 18-20 October 1965. Veroeffentlichungen Inst Meeresforsch Bremerhaven 2:131–147Google Scholar
  225. Thiel H (1971) Frequency and distribution of meiofauna in area of Island Faroe-Ridge. Berichte Der Deutschen Wissenschaftlichen Kommission Fur Meeresforschung 22:99–128Google Scholar
  226. Thiel H (1983) Meiobenthos and nanobenthos of the deep-sea. In: Rowe GT (ed) Deepp sea biology, The sea, vol 8. John Wiley and Sons, New York, pp 167–230Google Scholar
  227. Thiermann F, Vismann B, Giere O (2000) Sulphide tolerance of the marine nematode Oncholaimus campylocercoides - a result of internal sulphur formation. Mar Ecol Prog Ser 193:251–259.  https://doi.org/10.3354/meps193251 Google Scholar
  228. Thistle D, Carman KR, Sedlacek L, Brewer PG, Fleeger JW, Barry JP (2005) Deep-ocean, sediment-dwelling animals are sensitive to sequestered carbon dioxide. Mar Ecol Prog Ser 289:1–4.  https://doi.org/10.3354/meps289001 Google Scholar
  229. Thistle D, Sedlacek L, Carman KR, Fleeger JW, Barry JP (2007) Emergence in the deep sea: Evidence from harpacticoid copepods. Deep-Sea Res Part I-Oceanogr Res Pap 54:1008–1014.  https://doi.org/10.1016/j.dsr.2007.03.002 Google Scholar
  230. Tietjen JH (1992) Abundance and biomass of metazoan meiobenthos in the deep-sea, vol 360. Kluwer Academic Publ, Dordrecht, Deep-Sea Food Chains and the Global Carbon CycleGoogle Scholar
  231. Trebukhova YA, Miljutin DM, Pavlyuk ON, Mar’yash AA, Brenke N (2013) Changes in deep-sea metazoan meiobenthic communities and nematode assemblages along a depth gradient (North-western Sea of Japan, Pacific). Deep-Sea Res Part II-Top Stud Oceanogr 86–87:56–65.  https://doi.org/10.1016/j.dsr2.2012.08.015
  232. Tselepides A, Lampadariou N (2004) Deep-sea meiofaunal community structure in the Eastern Mediterranean: are trenches benthic hotspots? Deep-Sea Res Part I-Oceanogr Res Pap 51:833–847Google Scholar
  233. Tselepides A, Lampadariou N, Hatziyanni E (2004) Distribution of meiobentbos at bathyal depths in the Mediterranean Sea. A comparison between sites of contrasting productivity. Sci Mar 68:39–51Google Scholar
  234. Tsurumi M, de Graaf RC, Tunnicliffe V (2003) Distributional and biological aspects of copepods at hydrothermal vents on the Juan de Fuca Ridge, north-east Pacific ocean. J Mar Biol Assoc U K 83:469–477.  https://doi.org/10.1017/S0025315403007367h Google Scholar
  235. Van Dover CL (2014) Impacts of anthropogenic disturbances at deep-sea hydrothermal vent ecosystems: A review. Mar Environ Res 102:59–72.  https://doi.org/10.1016/j.marenvres.2014.03.008 PubMedGoogle Scholar
  236. Van Gaever S, Vanreusel A, Hughes JA, Bett B, Kiriakoulakis K (2004) The macro- and micro-scale patchiness of meiobenthos associated with the Darwin Mounds (north-east Atlantic). J Mar Biol Assoc U K 84:547–556.  https://doi.org/10.1017/S0025315404009555h
  237. Van Gaever S, Moodley L, de Beer D, Vanreusel A (2006) Meiobenthos at the Arctic Hakon Mosby Mud Volcano, with a parental-caring nematode thriving in sulphide-rich sediments. Mar Ecol Prog Ser 321:143–155.  https://doi.org/10.3354/meps321143 Google Scholar
  238. Van Gaever S, Galeron J, Sibuet M, Vanreusel A (2009a) Deep-sea habitat heterogeneity influence on meiofaunal communities in the Gulf of Guinea. Deep-Sea Research Part II-Topical Studies in. Oceanography 56:2259–2269.  https://doi.org/10.1016/j.dsr2.2009.04.008 Google Scholar
  239. Van Gaever S, Olu K, Derycke S, Vanreusel A (2009b) Metazoan meiofaunal communities at cold seeps along the Norwegian margin: Influence of habitat heterogeneity and evidence for connection with shallow-water habitats. Deep-Sea Res Part I-Oceanogr Res Pap 56:772–785.  https://doi.org/10.1016/j.dsr.2008.12.015 Google Scholar
  240. Van Gaever S, Raes M, Pasotti F, Vanreusel A (2010) Spatial scale and habitat-dependent diversity patterns in nematode communities in three seepage related sites along the Norwegian Sea margin. Mar Ecol 31:66–77.  https://doi.org/10.1111/j.1439-0485.2009.00314.x Google Scholar
  241. Vanhove S, Vermeeren H, Vanreusel A (2004) Meiofauna towards the South Sandwich Trench (750-6300m), focus on nematodes. Deep-Sea Research Part II-Topical Studies in Oceanography 51:1665–1687.  https://doi.org/10.1016/j.dsr2.2004.06.029
  242. Vanreusel A, VandenBossche I, Thiermann F (1997) Free-living marine nematodes from hydrothermal sediments: similarities with communities from diverse reduced habitats. Mar Ecol Prog Ser 157:207–219.  https://doi.org/10.3354/meps157207 Google Scholar
  243. Vanreusel A, Clough L, Jacobsen K, Ambrose W, Jutamas J, Ryheul V, Herman R, Vincx M (2000) Meiobenthos of the central Arctic Ocean with special emphasis on the nematode community structure. Deep-Sea Res Part I-Oceanogr Res Pap 47:1855–1879.  https://doi.org/10.1016/s0967-0637(00)00007-8 Google Scholar
  244. Vanreusel A, De Groote A, Gollner S, Bright M (2010a) Ecology and Biogeography of Free-Living Nematodes Associated with Chemosynthetic Environments in the Deep Sea: A Review. PLoS One 5:15.  https://doi.org/10.1371/journal.pone.0012449 Google Scholar
  245. Vanreusel A et al (2010b) The contribution of deep-sea macrohabitat heterogeneity to global nematode diversity. Mar Ecol 31:6–20Google Scholar
  246. Veit-Kohler G, Gerdes D, Quiroga E, Hebbeln D, Sellanes J (2009) Metazoan meiofauna within the oxygen-minimum zone off Chile: Results of the 2001-PUCK expedition. Deep-Sea Research Part II-Topical Studies in. Oceanography 56:1093–1099.  https://doi.org/10.1016/j.dsr2.2008.09.013 Google Scholar
  247. Vopel K, Thiel H (2001) Abyssal nematode assemblages in physically disturbed and adjacent sites of the eastern equatorial Pacific. Deep-Sea Research Part II-Topical Studies in. Oceanography 48:3795–3808.  https://doi.org/10.1016/s0967-0645(01)00068-6 Google Scholar
  248. Wieser, W., 1953. Die Beziehung zwischen Mundhohlengestalt, Ernahrungsweise und Vorkommen bei freilebenden marinen Nematoden Eine skologisen-morphologische studie Arkiv fur Zoologie 4:439–484Google Scholar
  249. White M, Bashmachnikov I, Arístegui J, Martins A (2007) Physical process and seamount productivity. In: Pitcher T, Morato T, Hart PJB, Clark MR, Haggan N, Santos RS (eds) Seamounts: Ecology. Fisheries and Conservation, Blackwell Oxford UK, pp 65–84Google Scholar
  250. Wigley RL, McIntyre AD (1964) Some quantitative comparisons of offshore meiobenthos and macrobenthos south of Marthas vineyard. Limnol Oceanogr 9:485–493Google Scholar
  251. Zekely J, Gollner S, Van Dover CL, Govenar B, Le Bris N, Nemeschkal HL, Bright M (2006a) Nematode communities associated with tubeworm and mussel aggregations on the East Pacific Rise. Cah Biol Mar 47:477–482Google Scholar
  252. Zekely J, Van Dover CL, Nemeschkal HL, Bright M (2006b) Hydrothermal vent meiobenthos associated with mytilid mussel aggregations from the Mid-Atlantic Ridge and the East Pacific Rise. Deep-Sea Res Part I-Oceanogr Res Pap 53:1363–1378.  https://doi.org/10.1016/j.dsr.2006.05.010 Google Scholar
  253. Zeppilli D, Mea M, Corinaldesi C, Danovaro R (2011) Mud volcanoes in the Mediterranean Sea are hot spots of exclusive meiobenthic species. Prog Oceanogr 91:260–272.  https://doi.org/10.1016/j.pocean.2011.01.001 Google Scholar
  254. Zeppilli D, Canals M, Danovaro R (2012) Pockmarks enhance deep-sea benthic biodiversity: a case study in the western Mediterranean Sea. Divers Distrib 18:832–846.  https://doi.org/10.1111/j.1472-4642.2011.00859.x Google Scholar
  255. Zeppilli D, Bongiorni L, Cattaneo A, Danovaro R, Santos RS (2013) Meiofauna assemblages of the Condor Seamount (North-East Atlantic Ocean) and adjacent deep-sea sediments. Deep Sea Research Part II: Topical Studies in Oceanography 98, Part A:87–100.  https://doi.org/10.1016/j.dsr2.2013.08.009
  256. Zeppilli D, Bongiorni L, Serrão Santos R, Vanreusel A (2014) Changes in nematode communities in different physiographic sites of the Condor Seamount (North-East Atlantic Ocean) and adjacent sediments. PLoS One 9:e115601.  https://doi.org/10.1371/journal.pone.0115601
  257. Zeppilli D, Vanreusel A, Pradillon F, Fuchs S, Mandon P, James T, Sarrazin J (2015a) Rapid colonisation by nematodes on organic and inorganic substrata deployed at the deep-sea Lucky Strike hydrothermal vent field (Mid-Atlantic Ridge). Mar Biodivers 45:489–504.  https://doi.org/10.1007/s12526-015-0348-2
  258. Zeppilli D et al (2015b) Is the meiofauna a good indicator for climate change and anthropogenic impacts? Mar Biodivers 45:505–535.  https://doi.org/10.1007/s12526-015-0359-z Google Scholar
  259. Zeppilli D, Pusceddu A, Trincardi F, Danovaro R (2016) Seafloor heterogeneity influences the biodiversity-ecosystem functioning relationships in the deep sea. Sci Rep 6:12.  https://doi.org/10.1038/srep26352 Google Scholar
  260. Zuhlke R, Blome D, van Bernem KH, Dittmann S (1998) Effects of the tube-building polychaete Lanice conchilega (Pallas) on benthic macrofauna and nematodes in an intertidal sandflat. Senckenberg Marit 29:131–138Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.National Institute of Water and Atmospheric Research (NIWA)WellingtonNew Zealand
  2. 2.Department of Marine ScienceUniversity of OtagoDunedinNew Zealand
  3. 3.Department of Biology, Faculty Science & MathematicsSultan Idris Education UniversityPerakMalaysia

Personalised recommendations