Marine Biodiversity

, Volume 49, Issue 1, pp 221–233 | Cite as

Diversity and ecology of crustaceans from shallow rocky habitats along the Mediterranean coast of Egypt

  • Rasha Hamdy
  • Joachim LangeneckEmail author
  • Manal Mohamed Atta
  • Mohamed Moussa Dorgham
  • Hoda Hassan El-Rashidy
  • Luigi Musco
Original Paper


Spatio-temporal patterns of the distribution of crustaceans from shallow hard bottoms along the Alexandria coast (Egypt, Mediterranean Sea) were studied during a complete year cycle and also in relation to potential drivers of change (both biotic and abiotic), including variation in habitat-forming species. Overall, the crustacean assemblages appeared poor, including only 14 species belonging to Amphipoda (five species), Isopoda (five species), Tanaidacea (two species), Cirripedia and Decapoda (one species each). The distribution patterns of crustacean assemblages appeared significantly variable both in the spatial and in the temporal dimension on a rather unpredictable basis, albeit variation was related to changes in dominant algal and invertebrate habitat formers. High variability and low species richness observed suggest that the analyzed assemblages are selected by local unfavorable environmental conditions. In fact, the crustacean hard bottom fauna is composed by a bulk of tolerant forms, including the dominant Tanais dulongi, Apohyale perieri, Dynamene bidentata, Sphaeroma serratum, Elasmopus pectenicrus, and Jassa marmorata. Their spatio-temporal dynamics, as well as those of the remaining species, and correlations with the variation of habitat formers and environmental variables are reported. This is a baseline assessment of the crustacean diversity along the Mediterranean coast of Egypt, thus having paramount importance for understanding the predicted future changes of biodiversity for the area.


Crustacea Levantine Sea Amphipoda Isopoda Tanaidacea 



We are indebted to the two anonymous reviewers who greatly contributed to improving our paper.


No funding to declare.

Compliance with ethical standards

Conflict of interest

No conflict of interest to declare.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed by the authors.

Field study

Permits and approval of field or observational studies have been obtained by the authors.

Supplementary material

12526_2017_787_MOESM1_ESM.doc (792 kb)
ESM 1 (DOC 792 kb)


  1. Abdel-Salam KM (2014) First record of the stomatopod crustacean Clorida albolitura Ahyong & Naiyanetr, 2000 from the eastern Mediterranean coast of Egypt. Int J Environ Sci Eng 5:81–97Google Scholar
  2. Abo-Taleb HA, El Raey M, Abou Zaid MM, Aboul Ezz SM, Abdel Aziz NE (2015) Study of the physico-chemical conditions and evaluation of the changes in eutrophication-related problems in El-Mex Bay. Afr J Environ Sci Technol 9:354–364CrossRefGoogle Scholar
  3. Abou Zaid MM, El Raey M, Aboul Ezz SM, Abdel Aziz NE, Abo-Taleb HA (2014) Diversity of Copepoda in a stressed eutrophic bay (El-Mex Bay), Alexandria, Egypt. Egypt J Aquat Res 40:143–162CrossRefGoogle Scholar
  4. Airoldi L (2003) The effects of sedimentation on rocky coast assemblages. Oceanogr Mar Biol 41:161–236Google Scholar
  5. Airoldi L, Bulleri F (2011) Anthropogenic disturbance can determine the magnitude of opportunistic species responses on marine urban infrastructures. PLoS One 6:e22985. CrossRefGoogle Scholar
  6. Al-Zahaby AAS, Abd El-Aal MA, Abd El-Bar SZ (2001) A stereoscopic study of the mouthparts of the marine isopod, Cirolana bovina (Isopoda: Flabellifera). Egypt J Biol 3:20–28Google Scholar
  7. Anderson MJ, Willis TJ (2003) Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology 84:511–525CrossRefGoogle Scholar
  8. Anderson MJ, Gorley RN, Clarke KR (2008) PERMANOVA for PRIMER: guide to software and statistical methods. PRIMER-E, PlymouthGoogle Scholar
  9. Antoniadou C, Chintiroglou C (2005) Biodiversity of zoobenthic hard-substrate sublittoral communities in the Eastern Mediterranean (North Aegean Sea). Estuar Coast Shelf Sci 62:637–653CrossRefGoogle Scholar
  10. Antoniadou C, Sarantidis S, Chintiroglou C (2011) Small-scale spatial variability of zoobenthic communities in a commercial Mediterranean port. J Mar Biol Assoc UK 91:77–89CrossRefGoogle Scholar
  11. Arévalo R, Pinedo S, Ballesteros E (2007) Changes in the composition and structure of Mediterranean rocky-shore communities following a gradient of nutrient enrichment: descriptive study and test of proposed methods to assess water quality regarding macroalgae. Mar Pollut Bull 55:104–113CrossRefGoogle Scholar
  12. Arrontes J, Anadón R (1990) Seasonal variation and population dynamics of isopods inhabiting intertidal macroalgae. Sci Mar 54:231–240Google Scholar
  13. Atta MM (1985) Study of the distribution and ecology of microcrustacea in the littoral waters of Alexandria region. Ph.D. thesis, Faculty of Science, Alexandria University, 214 ppGoogle Scholar
  14. Atta MM (1991) The occurrence of Paradella dianae (Menzies, 1962) (Isopoda, Flabellifera, Sphaeromatidae) in Mediterranean waters of Alexandria. Crustaceana 60:213–218CrossRefGoogle Scholar
  15. Azzurro E, Milazzo M, Maynou F, Abelló P, Temraz T (2010) First record of Percnon gibbesi (H. Milne Edwards, 1853) (Crustacea: Decapoda: Percnidae) from Egyptian waters. Aquat Invasions 5(S1):S123–S125. CrossRefGoogle Scholar
  16. Bate CS (1862) Catalogue of the specimens of Amphipodous crustacea in the collection of the British Museum. British Museum, LondonGoogle Scholar
  17. Bellan-Santini D (1980) Relationship between populations of amphipods and pollution. Mar Pollut Bull 11:224–227CrossRefGoogle Scholar
  18. Benedetti-Cecchi L, Bulleri F, Cinelli F (2000) The interplay of physical and biological factors in maintaining mid-shore and low-shore assemblages on rocky coasts in the north-west Mediterranean. Oecologia 123:406–417CrossRefGoogle Scholar
  19. Bianchi CN (2007) Biodiversity issues for the forthcoming tropical Mediterranean Sea. Hydrobiologia 580:7–21CrossRefGoogle Scholar
  20. Bulleri F, Airoldi L (2005) Artificial marine structures facilitate the spread of a non-indigenous green alga, Codium fragile ssp. tomentosoides, in the north Adriatic Sea. J Appl Ecol 42:1063–1072CrossRefGoogle Scholar
  21. Bulleri F, Chapman MG (2010) The introduction of coastal infrastructure as a driver of change in marine environments. J Appl Ecol 47:26–35CrossRefGoogle Scholar
  22. Bulleri F, Badalamenti F, Iveša L, Mikac B, Musco L, Jaklin A, Rattray A, Vega Fernández T, Benedetti-Cecchi L (2016) The effects of an invasive seaweed on native communities vary along a gradient of land-based human impacts. PeerJ 4:e1795CrossRefGoogle Scholar
  23. Chemello R, Milazzo M (2002) Effect of algal architecture on associated fauna: some evidence from phytal molluscs. Mar Biol 140:981–990CrossRefGoogle Scholar
  24. Chevreux E, Fage L (1925) Amphipodes. Faune de France, vol 9. Lechevalier, Paris, 488 ppGoogle Scholar
  25. Chintiroglou CC, Antoniadou C, Baxevanis A, Damianidis P, Karalis P, Vafidis D (2004) Peracarida populations of hard substrate assemblages in ports of the NW Aegean Sea (eastern Mediterranean). Helgol Mar Res 58:54–61. CrossRefGoogle Scholar
  26. Christodoulou M, Paraskevopoulou S, Syranidou E, Koukouras A (2013) The amphipod (Crustacea: Peracarida) fauna of the Aegean Sea, and comparison with those of the neighbouring seas. J Mar Biol Assoc UK 93:1303–1327CrossRefGoogle Scholar
  27. Çinar ME, Katağan T, Koçak F, Öztürk B, Ergen Z, Kocatas A, Önen M, Kirkim F, Bakir K, Kurt G, Dağli E, Açik S, Doğan A, Özcan T (2008) Faunal assemblages of the mussel Mytilus galloprovincialis in and around Alsancak Harbour (Izmir Bay, eastern Mediterranean) with special emphasis on alien species. J Mar Syst 71:1–17CrossRefGoogle Scholar
  28. Coll M, Piroddi C, Steenbeek J, Kaschner K, Ben Rais Lasram F, Aguzzi J et al (2010) The biodiversity of the Mediterranean Sea: estimates, patterns, and threats. PLoS One 5:e11842CrossRefGoogle Scholar
  29. Connell JH (1972) Community interactions on marine rocky intertidal shores. Annu Rev Ecol Syst 3:169–192CrossRefGoogle Scholar
  30. Conradi M, López-González PJ, García-Gómez C (1997) The amphipod community as a bioindicator in Algeciras Bay (southern Iberian Peninsula) based on a spatio-temporal distribution. Mar Ecol 18:97–111CrossRefGoogle Scholar
  31. Conradi M, López-González PJ, Cervera JL, García-Gómez JC (2000) Seasonality and spatial distribution of peracarids associated with the bryozoan Bugula neritina in Algeciras Bay, Spain. J Crustac Biol 20:334–349CrossRefGoogle Scholar
  32. Costa OG (1838) Fauna del Regno di Napoli ossia enumerazione di tutti gli animali che abitano le diverse regioni di questo regno e le acque che le bagnano: contenente la descrizione de nuovi o poco esattamente conosciuti con figure ricavate da originali viventi e dipinte al naturale. Infusori. Azzolino & Compagno, Napoli, pp 1–40Google Scholar
  33. Cruz-Rivera E, Friedlander M (2013) Effects of algal phenotype on mesograzer feeding. Mar Ecol Prog Ser 490:69–78. CrossRefGoogle Scholar
  34. Dorgham MM, Hamdy R, El-Rashidy HH, Atta MM (2013) First records of polychaetes new to Egyptian Mediterranean waters. Oceanologia 55:235–267CrossRefGoogle Scholar
  35. Dorgham MM, Hamdy R, El-Rashidy HH, Atta MM, Musco L (2014) Distribution patterns of shallow water polychaetes (Annelida) along the coast of Alexandria, Egypt (eastern Mediterranean). Mediterr Mar Sci 15:635–649CrossRefGoogle Scholar
  36. El-Komi MM (1973) Crustacea associated with fouling in the Eastern Harbour of Alexandria, with special reference to amphipods. M.Sc. thesis, Faculty of Science, Alexandria University, 295 ppGoogle Scholar
  37. Forniz C, Maggiore F (1985) New records of Sphaeromatidae from the Mediterranean Sea (Crustacea, Isopoda). Oebalia 11:779–783Google Scholar
  38. Galil BS, Boero F, Campbell ML, Carlton JT, Cook E, Fraschetti S et al (2015) ‘Double trouble’: the expansion of the Suez Canal and marine bioinvasions in the Mediterranean Sea. Biol Invasions 17:973–976. CrossRefGoogle Scholar
  39. Gambi MC, Musco L, Giangrande A, Badalamenti F, Micheli F, Kroeker KJ (2016) Distribution and functional traits of polychaetes in a CO2 vent system: winners and losers among closely related species. Mar Ecol Prog Ser 550:121–134CrossRefGoogle Scholar
  40. Giangrande A (1990) Distribution and reproduction of syllids (Annelida, Polychaeta) along a vertical cliff (west Mediterranean). Oebalia 16:69–85Google Scholar
  41. Holdich DM (1968) Reproduction, growth and bionomics of Dynamene bidentata (Crustacea: Isopoda). J Zool 156:137–153. CrossRefGoogle Scholar
  42. Holthuis LB (1956) Fauna van Nederland. Isopoden en Tanaidacea (KV). 16:1–280Google Scholar
  43. Jacobi CM, Langevin R (1996) Habitat geometry of benthic substrata: effects on arrival and settlement of mobile epifauna. J Exp Mar Biol Ecol 206:39–54CrossRefGoogle Scholar
  44. Kamermans P, Malta EJ, Verschuure JM, Schrijvers L, Lentz LF, Lien ATA (2002) Effect of grazing by isopods and amphipods on growth of Ulva spp. (Chlorophyta). Aquat Ecol 36:425–433CrossRefGoogle Scholar
  45. Marchini A, Gauzer K, Occhipinti-Ambrogi A (2004) Spatial and temporal variability of hard-bottom macrofauna in a disturbed coastal lagoon (Sacca di Goro, Po River Delta, Northwestern Adriatic Sea). Mar Pollut Bull 48:1084–1095CrossRefGoogle Scholar
  46. Maury A (1929) Tanaidaces et Isopodes des Cõtes normandes (Excl. Expicarides) crustaces marins, d’eaux saumatres et d’eaux douces. Bull Soc Linn Normandi Caen Ser 8 1:152–161Google Scholar
  47. McDonald MR, McClintock JB, Amsler CD, Rittschof D, Angus RA, Orihuela B, Lutostanski K (2009) Effects of ocean acidification over the life history of the barnacle Amphibalanus amphitrite. Mar Ecol Prog Ser 385:179–187CrossRefGoogle Scholar
  48. Micheli F, Saenz-Arroyo A, Greenley A, Vazquez L, Espinoza Montes JA, Rossetto M, De Leo GA (2012) Evidence that marine reserves enhance resilience to climatic impacts. PLoS One 7:e40832CrossRefGoogle Scholar
  49. Micheli F, Halpern BS, Walbridge S, Ciriaco S, Ferretti F, Fraschetti S, Lewison R, Nykjaer L, Rosenberg AA (2013) Cumulative human impacts on Mediterranean and Black Sea marine ecosystems: assessing current pressures and opportunities. PLoS One 8:e79889CrossRefGoogle Scholar
  50. Monod T (1931) Tanaidacés et Isopodes aquatiques de l’Afrique Occidentale et septentrionale: 3e partie. Sphaeromatidae. Mem Soc Sci Nat Maroc 29:7–91Google Scholar
  51. Monod T (1933) Tanaidacea et isopoda. Mission Robert- Ph. Dollfus en Égypte. Mem Inst Egypte 21:161–264Google Scholar
  52. Musco L (2012) Ecology and diversity of Mediterranean hard-bottom Syllidae (Annelida): a community-level approach. Mar Ecol Prog Ser 461:107–119CrossRefGoogle Scholar
  53. Musco L, Giangrande A (2005) Mediterranean Syllidae (Annelida: Polychaeta) revisited: biogeography, diversity and species fidelity to environmental features. Mar Ecol Prog Ser 304:143–153CrossRefGoogle Scholar
  54. Occhipinti-Ambrogi A, Marchini A, Cantone G, Castelli A, Chimenz C, Cormaci M, Froglia C, Furnari G, Gambi MC, Giaccone G, Giangrande A, Gravili C, Mastrototaro F, Mazziotti C, Orsi-Relini L, Piraino S (2011) Alien species along the Italian coasts: an overview. Biol Invasions 13:215–237. CrossRefGoogle Scholar
  55. Paavola M, Olenin S, Leppäkoski E (2005) Are invasive species most successful in habitats of low native species richness across European brackish water seas? Estuar Coast Shelf Sci 64:738–750CrossRefGoogle Scholar
  56. Parker JD, Duffy JE, Orth RJ (2001) Plant species diversity and composition: experimental effects on marine epifaunal assemblages. Mar Ecol Prog Ser 224:55–67CrossRefGoogle Scholar
  57. Ramadan SE, Kheirallah AM, Abdel-Salam KM (2006) Marine fouling community in the eastern harbour of Alexandria, Egypt compared with four decades of previous studies. Mediterr Mar Sci 7(2):19–30CrossRefGoogle Scholar
  58. Sánchez-Jerez P, Barberá-Cebrian C, Ramos-Esplá AA (2000) Influence of the structure of Posidonia oceanica meadows modified by bottom trawling on crustacean assemblages: comparison of amphipods and decapods. Sci Mar 64:319–326CrossRefGoogle Scholar
  59. Scinto A, Benvenuto C, Cerrano C, Mori M (2007) Seasonal cycle of Jassa marmorata Holmes, 1903 (Amphipoda) in the Ligurian Sea (Mediterranean, Italy). J Crustac Biol 27:212–216CrossRefGoogle Scholar
  60. Sezgïn M, Bakir K, Katağan T (2007) New record of a Lessepsian amphipod from the Levantine coast of Turkey: Elasmopus pectenicrus (Bate, 1862). Crustaceana 80:247–251CrossRefGoogle Scholar
  61. Soliman YM (1997) Ecological and biological studies on some benthic communities along the coast of Alexandria. M.Sc. thesis, Faculty of Science, Alexandria University, 193 ppGoogle Scholar
  62. Soule DF, Soule JD (1979) Bryozoa (Ectoprocta). In: Hart CW Jr, Fuller SLH (eds) Pollution ecology of estuarine invertebrates. Academic Press, New YorkGoogle Scholar
  63. Sousa WP (2001) Natural disturbance and the dynamics of marine benthic communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, SunderlandGoogle Scholar
  64. Stål J, Pihl L, Wennhage H (2007) Food utilisation by coastal fish assemblages in rocky and soft bottoms on the Swedish west coast: inference for identification of essential fish habitats. Estuar Coast Shelf Sci 71:593–607. CrossRefGoogle Scholar
  65. Steuer A (1938) Cumacea, Stomatopoda, Leptostraca. XVI. The fishery grounds near Alexandria. Not Mem Hydrob Fish Direct Egypt 26:1–67Google Scholar
  66. Therriault TW, Kolasa J (2000) Explicit links among physical stress, habitat heterogeneity and biodiversity. Oikos 89:387–391CrossRefGoogle Scholar
  67. Torrecilla Roca I, Guerra García JM (2012) Feeding habits of the peracarid crustaceans associated to the alga Fucus spiralis in Tarifa Island, Cádiz (Southern Spain). Zool Baetica 23:39–47Google Scholar
  68. Virnstein RW (1987) Seagrass-associated invertebrate communities of the southeastern USA: a review. Flor Mar Res Publ 42:89–116Google Scholar
  69. Ward TJ, Hutchings PA (1996) Effects of trace metals on infaunal species composition in polluted intertidal and subtidal marine sediments near a lead smelter, Spencer Gulf, South Australia. Mar Ecol Prog Ser 135:123–135CrossRefGoogle Scholar
  70. Witman JD, Dayton PK (2001) Rocky subtidal communities. In: Bertness MD, Gaines SD, Hay ME (eds) Marine community ecology. Sinauer Associates, SunderlandGoogle Scholar
  71. Zenetos A, Çinar ME, Pancucci-Papadopoulou MA, Harmelin JG, Furnari G, Andaloro F, Bellou N, Streftaris N, Zibrowius H (2005) Annotated list of marine alien species in the Mediterranean with records of the worst invasive species. Mediterr Mar Sci 6:63–118CrossRefGoogle Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of Oceanography, Faculty of ScienceAlexandria UniversityAlexandriaEgypt
  2. 2.Dipartimento di BiologiaUniversità di PisaPisaItaly
  3. 3.Stazione Zoologica Anton DohrnNaplesItaly

Personalised recommendations