Morphological and molecular characterizations of Africanema multipapillatum sp. nov. (Nematoda, Enoplida) in intertidal sediment from the East China Sea

Original Paper

Abstract

A new nematode species, Africanema multipapillatum sp. nov., is described from a sand beach in the East China Sea. The new species is assigned to the family Trefusiidae based on both the morphological and molecular analyses. Africanema multipapillatum sp. nov. is a distinct species characterized by its toothless and spacious buccal cavity, jointed labial setae, non-spiral and elongate groove-shaped amphidial fovea, faintly striated cuticle, and a single posterior ovary. Within the family Trefusiidae, the new species is most similar to the monotypic genus Africanema, but differs distinctly from Africanema interstitiale by the long and curved spicules with gubernaculum apophysis, long and slim sperm cells, and the lack of pharyngeal papillate supplements. Molecular phylogenetic analyses indicate that Africanema multipapillatum sp. nov. and the genera Rhabdocoma and Trefusia always fell within a single clade of the family Trefusiidae, where it is closely related to Rhabdocoma. Thus, we propose assigning the genus Rhabdocoma from the subfamily Trefusiinae to the subfamily Halanonchinae.

Keywords

Marine nematode New species Trefusiidae Rhabdocoma Taxonomy Phylogeny 

Notes

Acknowledgments

This work was supported by the National Programme on Global Change and Air–Sea Interaction (grant no: GASI-01-02-02-02), the China Postdoctoral Science Foundation (2016 M602201), and the Meiobenthic Community and Environmental Assessment of Nanji Islands National Marine Natural Reserve under Human Disturbance (NJKJ2016). We thank the anonymous reviewers for their constructive suggestions and comments. Xumiao Chen, Yuhang Li, Ju Li, and Sichao Pu provided a lot of support and help in the sample collection and molecular analysis.

References

  1. Andrássy I (1983) A taxonomic review of the suborder Rhabditina (Nematoda: Secernentia). Office de la Recherche Scientifique et Technique Outre-Mer, Paris, 241 ppGoogle Scholar
  2. Bik HM, Lambshead PJD, Thomas WK, Lunt DH (2010) Moving towards a complete molecular framework of the Nematoda: a focus on the Enoplida and early-branching clades. BMC Evol Biol 10:1–14. doi: 10.1186/1471-2148-10-353 CrossRefGoogle Scholar
  3. Blaxter ML, De Ley P, Garey JR, et al. (1998) A molecular evolutionary framework for the phylum Nematoda. Nature 392 (6671):71–5Google Scholar
  4. Coomans A (1979) Addendum I. A proposal for a more precise terminology of the body regions in the nematode. Annales de la Société Royale Zoologique de Belgique 108:155–117Google Scholar
  5. Darriba D, Taboada  GL, Doallo R, Posada D. (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772–772Google Scholar
  6. De Coninck LAP (1965) Systématique des Nématodes. In: Grassé P-P (ed) Traite de Zoologie, vol 4. Masson et Cie, Paris, pp 586–731Google Scholar
  7. Filipjev IN (1929) Les nématodes libres de la baie de la Neva et de l’extrémité orientale du Golfe de Finlande. Première partie. Arch Hydrobiol 20:637–699Google Scholar
  8. Filipjev IN (1934) The classification of the free-living nematodes and their relation to the parasitic nematodes. Smithsonian Miscellaneous Collections 89:1–64Google Scholar
  9. Gerlach SA, Riemann F (1974) The Bremerhaven checklist of aquatic nematodes. A catalogue of Nematoda Adenophorea excluding the Dorylaimidae. Veröffentlichungen des Instituts für Meeresforschung in Bremerhaven, Supplement 41:1–734Google Scholar
  10. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  11. Holterman M (2008) Phylogenetic relationships within the phylum Nematoda as revealed by ribosomal DNA, and their biological implications. PhD thesis, Wageningen UniversityGoogle Scholar
  12. Leduc D (2013) Two new free-living nematode species (Trefusiina: Trefusiidae) from Chatham Rise crest, Southwest Pacific Ocean. Eur J Taxon 55(55):1–13Google Scholar
  13. Lorenzen S (1981) Entwurf eines phylogenetischen systems der freilebenden Nematoden. Veröff Inst Meeresforsch Breme, Supplement 7:1–472Google Scholar
  14. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Proceedings of the Gateway Computing Environments Workshop (GCE), New Orleans, Louisiana, 14 November 2010, pp 1–8Google Scholar
  15. Platt HM, Warwick RM (1983) Freeliving marine nematodes. Part 1: British enoplids. Pictorial key to world genera and notes for the identification of British species. In: Kermack DM, RSK B (eds) Synopses of the British Fauna (new series), no. 28. Cambridge University Press, Cambridge, pp 169–171Google Scholar
  16. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Hӧhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61(3):539–542CrossRefPubMedPubMedCentralGoogle Scholar
  17. Rusin LY, Aleshin VV, Vladychenskaya NS, Milyutina IA, Kedrova OS, Petrov NB (2001) Trefusiidae are a subtaxon of marine Enoplida (Nematoda): evidence from primary structure of hairpin 35 and 48 loops of SSU rRNA gene. Mol Biol 35:778–784CrossRefGoogle Scholar
  18. Siddiqi MR (1983) Phylogenetic relationships of the soil nematode orders Dorylaimida, Mononchida, Triplonchida and Alaimida, with a revised classification of the subclass Enoplia. Pak J Nematol 1:79–110Google Scholar
  19. Smol N, Coomans A (2006) Chapter 12. Order Enoplida. In: Eyualem-Abebe TW, Andrássy I (eds) Freshwater nematodes: ecology and taxonomy. CABI Publishing, Wallingford, pp 225–292. doi: 10.1079/9780851990095.0225 CrossRefGoogle Scholar
  20. Smol N, Muthumbi A, Sharma J (2014) Chapter 7.3. Order Enoplida. In: Schmidt-Rhaesa A (ed) Handbook of zoology. Gastrotricha, Cycloneuralia and Gnathifera. Volume 2: Nematoda. De Gruyter, Germany, pp 193–250. doi: 10.1515/9783110274257.193 Google Scholar
  21. Stamatakis A (2014) RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30(9):1312–1313. doi: 10.1093/bioinformatics/btu033 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680CrossRefPubMedPubMedCentralGoogle Scholar
  23. van Megen H, van den Elsen S, Holterman M, Karssen G, Mooyman P, Bongers T, Holovachov O, Bakker J, Helder J (2009) A phylogenetic tree of nematodes based on about 1200 full-length small subunit ribosomal DNA sequences. Nematology 11:927–950CrossRefGoogle Scholar
  24. Vanaverbeke J (2015) Trefusiidae Gerlach, 1966. In: Guilini K, Bezerra TN, Eisendle-Flöckner U, Deprez T, Fonseca G, Holovachov O, Leduc D, Miljutin D, Moens T, Sharma J, Smol N, Tchesunov A, Mokievsky V, Vanaverbeke J, Vanreusel A, Venekey V, Vincx M (2017) NeMys: World Database of Free-Living Marine Nematodes. Accessed at http://nemys.ugent.be/aphia.php?p=taxdetails&id=2211 on 2017–01-08
  25. Vincx M, Furstenberg JP (1988) Africanema interstitialis gen. nov., sp. nov., a species which indicates the relationship between the Trefusiidae (Halanonchinae) and the Tripyloididae (Nematoda). Stygologia 4(1):10–16Google Scholar

Copyright information

© Senckenberg Gesellschaft für Naturforschung and Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Institute of OceanologyChinese Academy of SciencesQingdaoChina
  2. 2.University of Chinese Academy of SciencesBeijingChina
  3. 3.Laboratory for Marine Biology and BiotechnologyQingdao National Laboratory for Marine Science and TechnologyQingdaoChina

Personalised recommendations