PWV Estimation Using GPS and its Comparison with INSAT-3D Rainfall Data

Abstract

Precipitable water vapor (PWV) plays an important role in understanding the atmosphere and weather. The advancement in Global Navigation Satellite System (GNSS) technology provides the possibility of computing PWV in near real time. In this study, the PWV was computed using the Zenith Tropospheric Delay (ZTD) from Global Positioning System (GPS) data for two International GNSS Service (IGS) stations (IISC & HYDE) for monsoon period (June–September) of 2014 and 2015. The GPS-derived PWV has been validated with reference to radiosonde data and University NAVSTAR Consortium (UNAVCO) PWV products. The coefficient of determination between GPS-derived PWV and radiosonde PWV is 0.73–0.83 for IISC station and 0.76–0.91 for HYDE station. For IISC station, the coefficient of determination between GPS-derived PWV and UNAVCO-derived PWV is 0.80–0.89. Also, in this study, GPS-derived PWV for IISC station has been compared with the rainfall events of Indian National Satellite System (INSAT-3D). From the analysis, we observed a direct relation between PWV and rainfall events from Hydro Estimator Method (HEM), INSAT Multi spectral Rainfall (IMR) products of INSAT-3D. This study highlights the satellite-based observations from GNSS and INSAT satellite for regional weather forecasting in near real time.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

References

  1. Coster, A. J., Niell, A. E., Solheim, F. S., Mendes, V.B., Toor, P.C., Langley, R. B., Ruggles, C. A., (1996). The Westford water vapor experiment: Use of GPS to determine total precipitable water vapor, presented at the ION 52nd Annual Meeting, Cambridge, MA 19–21 June 1996.

  2. Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., & Ware, R. (1992). GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research, 97(D14), 15787–15801.

    Article  Google Scholar 

  3. Bevis, M., Businger, S., & Chiswell, S. (1994). GPS meteorology: Mapping zenith wet delays on to Precipitable water. Journal of Applied Meteorology, 33, 379–386.

    Article  Google Scholar 

  4. Singh, D., Ghosh, J. K., & Kashyap, D. (2012). Development of a site-specific ZHD model using radiosonde data. Acta Geodaetic et Geophsica Hungarica, 47(1), 1–11.

    Article  Google Scholar 

  5. Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E., & Elgered, G. (1985). Geodesy by radio interferometry: Effects of atmospheric modelling errors on estimates of baseline length. Radio Science, 20, 1593–1607.

    Article  Google Scholar 

  6. INSAT-3D Data Products Catalog, (2014), National Satellite Meteorological Centre, India Meteorological Department, Lodi Road, New Delhi-110003.

  7. Jade, S., Vijayan, M. S. M., Gaur, V. K., Prabhu, T., & Sahu, S. C. (2005). Estimates of precipitable water vapor from GPS data in Indian subcontinent. Journal of Atmospheric and Solar-Terrestrial Physics, 67(6), 623–635.

    Article  Google Scholar 

  8. MATLAB 7.0 and statistics Tool box release(2004). The Mathworks, Inc., Natick Massachusetts, United States.

  9. Rocken, C., Ware, R., Hove, T. V., Solheim, F., Alber, C., Johnson, J., et al. (1993). Sensing atmospheric water vapour with the global positioning system. Geophysical Research Letters, 20(23), 2631–2634.

    Article  Google Scholar 

  10. Rocken, C., Hove, T. V., Johnson, J., Solheim, F., Ware, R., Bevis, M., et al. (1995). GPS/STORM–GPS sensing of atmospheric water vapor for meteorology. Journal of Atmospheric and Oceanic Technology, 12, 468–478.

    Article  Google Scholar 

  11. Rocken, C., Van Hove, T., & Ware, R. (1997). Near real-time GPS sensing of atmospheric water vapor. Geophysical Research Letters, 24(24), 3221–3224.

    Article  Google Scholar 

  12. Rolf Dach, Peter Walser (2015). Bernese GNSS Software Version 5.2 manual

  13. Saastamoinen, J., (1972). Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, The Use of Artificial Satellites for Geodesy, Geophys. Monogr. Ser. 15 American Geophysical Union, pages 247–251.

  14. Sanjay Kumar, A. K., Singh, A. K., & Prasad and R.P. Singh, . (2009). Annual variability of water vapor from GPS and MODIS data over the Indo-Gangetic Plains. The Journal of Indian Geophysical Union, 13(1), 17–23.

    Google Scholar 

  15. Jade, S., & Vijayan, M. S. M. (2008). GPS-based atmospheric precipitable water vapor estimation using meteorological parameters interpolated from NCEP global reanalysis data. Journal of Geophysical Research, 113(D03106), 2008. https://doi.org/10.1029/2007JD008758.

    Article  Google Scholar 

  16. Suparta, W. (2011). Variability of GPS-Based Precipitable Water Vapor over Antarctica: Comparison Between Observations and Predictions. World Applied Sciences Journal, 12(9), 1597–1604.

    Google Scholar 

  17. aws.imd.gov.in (accessed 30 April 2018).

  18. ftp://ftp.aiub.unibe.ch (accessed 30 April 2018).

  19. http://weather.uwyo.edu/upperair/sounding.html (accessed 30 April 2018).

  20. ftp://cddis.gsfc.nasa.gov (accessed 30 April 2018).

Download references

Acknowledgements

We thank IGS for providing GNSS data which was obtained through the online archives of the Crustal Dynamics Data Information System (CDDIS), NASA, Goddard Space Flight Center, Green belt, MD, USA.(ftp://cddis.gsfc.nasa.gov) and also thanked India Meteorological Department for providing Automatic Weather Station data. We extend our sincere thanks to Saritha PK, NRSC. for her support in INSAT-3D (IMR and HEM) rainfall data analysis. The INSAT-3D data are available in the public domain from the portal www.mosdac.gov.in.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sravanthi Gunti.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Gunti, S., Narendran, J. & Muralikrishnan, S. PWV Estimation Using GPS and its Comparison with INSAT-3D Rainfall Data. J Indian Soc Remote Sens (2021). https://doi.org/10.1007/s12524-021-01324-7

Download citation

Keywords

  • Precipitable water vapor
  • Bernese 5.2
  • IMR
  • HEM and ZTD