Landslide Susceptibility Zonation With Special Emphasis on Tectonic Features for Occurrence of Landslides in Lower Indian Himalaya

Abstract

Landslide susceptibility zonation (LSZ) map is prepared for a part of the lower Himalayas using the fuzzy cosine amplitude method. The prepared LSZ map is validated both statistically and physically, and it is found that around 30% of the study area lies in zones of high to very high landslide susceptibility. To correlate the Himalayan seismicity with the landslide hazard, the prepared LSZ map is further assessed in terms of the impact of fault distance on the occurrence and spatial distribution of landslides in the study area. The results quantify a strong inverse correlation between fault distance and the probability of landslide occurrence. A high coefficient of determination (R2 = 0.986) indicates that the equation can realistically predict the impact of fault distance on the study area's landslide occurrence. Further, landslide relative frequency (LRF) method is used to evaluate the statistical contribution of fault distance toward overall landslide susceptibility for the study area. It is found that distance from any major tectonic feature is a significant landslide causative parameter, with a relative importance of 21%. The prepared LSZ map will be valuable for decision-makers during smart town planning and sustainable development in the study area.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. Anbalagan, R. (1992). Landslide hazard evaluation and zonation mapping in mountainous terrain. Engineering Geology, 32(4), 269–277.

    Article  Google Scholar 

  2. Anbalagan, R., & Singh, B. (1996). Landslide hazard and risk assessment mapping of mountainous terrains—a case study from Kumaun Himalaya, India. Engineering Geology, 43(4), 237–246.

    Article  Google Scholar 

  3. Arora, M. K., Das Gupta, A. S., & Gupta, R. P. (2004). An artificial neural network approach for landslide hazard zonation in the Bhagirathi (Ganga) Valley, Himalayas. International Journal of Remote Sensing, 25(3), 559–572.

    Article  Google Scholar 

  4. Bhattacharya, A., Mukherjee, K., Kuri, M., Vöge, M., Sharma, M. L., Arora, M. K., & Bhasin, R. K. (2015). Potential of SAR intensity tracking technique to estimate displacement rate in a landslide-prone area in Haridwar region, India. Natural Hazards, 79(3), 2101–2121.

    Article  Google Scholar 

  5. Bhukosh, Geological Survey of India, Ministry of Mines, Government of India. Available online: http://bhukosh.gsi.gov.in/Bhukosh (Accessed on 2nd April, 2018).

  6. Buchhorn M., Smets B., Bertels L., De Roo, B., Lesiv, M., Tsendbazar, N. E., Herold, M., Fritz, S. (2016). Copernicus Global Land Service: Land Cover 100m: collection 3: epoch. (2016). Globe 2020. https://doi.org/10.5281/zenodo.3518026.

  7. Chigira, M., & Yagi, H. (2006). Geological and geomorphological characteristics of landslides triggered by the 2004 Mid Niigta prefecture earthquake in Japan. Engineering Geology, 82(4), 202–221.

    Article  Google Scholar 

  8. Das, I., Sahoo, S., van Westen, C. J., Stein, A., & Hack, R. (2010). Landslide susceptibility assessment using logistic regression and its comparison with a rock mass classification system, along a road section in the northern Himalayas (India). Geomorphology, 114(4), 627–637.

    Article  Google Scholar 

  9. Dasgupta, S., Narula, P. L.; Acharyya, S. K.; Banerjee, J. (2000). Seismotectonic atlas of India and its environs. A publication of Geological Survey of India, New Delhi.

  10. Gupta, R. P.; Saha, A. K.; Arora, M. K.; Kumar, A. (1999) .Landslide hazard zonation in a part of the Bhagirathi Valley. Garhwal Himalyas, using integrated remote sensing and GIS. Himalayan Geology, 20, 71–85.

  11. Gupta, V., Nautiyal, H., Kumar, V., Jamir, I., & Tandon, R. S. (2016). Landslide hazards around Uttarkashi township, Garhwal Himalaya, after the tragic flash flood in June 2013. Natural Hazards, 80(3), 1689–1707.

    Article  Google Scholar 

  12. Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2006). A comparative study of conventional, ANN black box, fuzzy and combined neural and fuzzy weighting procedures for landslide susceptibility zonation in Darjeeling Himalayas. Engineering Geology, 85(3–4), 347–366.

    Article  Google Scholar 

  13. Kanungo, D. P., Arora, M. K., Sarkar, S., & Gupta, R. P. (2009). Landslide susceptibility zonation (LSZ) mapping—a review. Journal of South Asia Disaster Studies, 2(1), 81–105.

    Google Scholar 

  14. Kayastha, P., Dhital, M. R., De Smedt, F. (2013). Application of the analytical hierarchy process (AHP) for landslide susceptibility mapping: a case study from the Tinau watershed, West Nepal. Computers & Geosciences, 52, 398–408.

  15. Keefer, D. K. (1984). Landslides caused by earthquakes. Geological Society of America Bulletin, 95(4), 406–421.

    Article  Google Scholar 

  16. Kumar, R., & Anbalagan, R. (2015). Landslide susceptibility zonation in part of Tehri reservoir region using frequency ratio, fuzzy logic and GIS. Journal of Earth System Science, 124(2), 431–448.

    Article  Google Scholar 

  17. Kumar, D., Thakur, M., Dubey, C. S., & Shukla, D. P. (2017). Landslide susceptibility mapping & prediction using support vector machine for Mandakini River Basin, Garhwal Himalaya. India. Geomorphology, 295, 115–125.

    Article  Google Scholar 

  18. Lee, S., & Pradhan, B. (2007). Landslide hazard mapping at Selangor, Malaysia using frequency ratio and logistic regression models. Landslides, 4(1), 33–41.

    Article  Google Scholar 

  19. Liao, H. W., & Lee, C. T. (2000). Landslides triggered by the Chi-Chi earthquake. In Proceedings of the 21st Asian conference on remote sensing, Taipei, December 2000, 1(2), 383–388.

  20. Modified BIS guidelines for macro level landslide hazard zonation mapping. (2005). A publication of the Geological Survey of India, 2005, New Delhi.

  21. Mohammady, M., Pourghasemi, H. R., & Pradhan, B. (2012). Landslide susceptibility mapping at Golestan Province, Iran: a comparison between frequency ratio, Dempster-Shafer, and weights-of-evidence models. Journal of Asian Earth Sciences, 61, 221–236.

    Article  Google Scholar 

  22. Nath, R.R. (2019). Seismically Induced Landslide Hazard Analyses for Lower Indian Himalaya. Ph.D. Dissertation, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India, 21st September 2019.

  23. Nath, R. R., Sharma, M. L., & Tyagi, A. (2020). Review of the current practice on inclusion of seismicity in landslide susceptibility zonation: A case study for Garhwal Himalaya. Himalayan Geology, 41(2), 222–233.

    Google Scholar 

  24. National Landslide Risk Management Strategy. (2019). A publication of the National Disaster Management Authority, Government of India. September 2019, New Delhi.

  25. National Disaster Management Guidelines—Management of Landslides and Snow Avalanches. (2009). A publication of the National Disaster Management Authority, Government of India. June 2009, New Delhi.

  26. Office of the Registrar General & Census Commissioner, Ministry of Home Affairs, Government of India. Available online: https://censusindia.gov.in/ (Accessed on 22nd September, 2020).

  27. Ozdemir, A., & Altural, T. (2013). A comparative study of frequency ratio, weights of evidence and logistic regression methods for landslide susceptibility mapping: Sultan Mountains, SW Turkey. Journal of Asian Earth Sciences, 64, 180–197.

    Article  Google Scholar 

  28. Pachauri, A. K., & Pant, M. (1992). Landslide hazard mapping based on geological attributes. Engineering Geology, 32(2), 81–100.

    Article  Google Scholar 

  29. Pain, A., Kanungo, D. P., & Sarkar, S. (2014). Rock slope stability assessment using finite element-based modelling–examples from the Indian Himalayas. Geomechanics and Geoengineering, 9(3), 215–230.

    Article  Google Scholar 

  30. Pandey, V. K., Pourghasemi, H. R., & Sharma, M. C. (2018). Landslide susceptibility mapping using maximum entropy and support vector machine models along the Highway Corridor, Garhwal Himalaya. Geocarto International, 35(2), 168–187.

    Article  Google Scholar 

  31. Pareek, N., Sharma, M. L., & Arora, M. K. (2010). Impact of seismic factors on landslide susceptibility zonation: a case study in part of Indian Himalayas. Landslides, 7(2), 191–201.

    Article  Google Scholar 

  32. Pareek, N., Pal, S., Sharma, M. L., & Arora, M. K. (2013). Study of effect of seismic displacements on landslide susceptibility zonation (LSZ) in Garhwal Himalayan region of India using GIS and remote sensing techniques. Computers & Geosciences, 61, 50–63.

    Article  Google Scholar 

  33. Peethambaran, B., Anbalagan, R., & Shihabudheen, K. V. (2019). Landslide susceptibility mapping in and around Mussoorie Township using fuzzy set procedure, MamLand and improved fuzzy expert system-A comparative study. Natural Hazards, 96(1), 121–147.

    Article  Google Scholar 

  34. Preparation of landslide hazards zonation maps in mountainous terrains, guidelines, part-2 Macrozonation: IS 4496 (part-2). (1998). A publication of the Bureau of Indian Standards, 1998, New Delhi.

  35. Rodrıguez, C. E., Bommer, J. J., & Chandler, R. J. (1999). Earthquake-induced landslides: 1980–1997. Soil Dynamics and Earthquake Engineering, 18(5), 325–346.

    Article  Google Scholar 

  36. Sangeeta; Maheshwari, B. K. (2019). Earthquake-Induced Landslide Hazard Assessment of Chamoli District, Uttarakhand Using Relative Frequency Ratio Method. Indian Geotechnical Journal, 49, 108–123.

  37. Sarkar, S., Kanungo, D. P., & Mehrotra, G. S. (1995). Landslide hazard zonation: a case study in Garhwal Himalaya, India. Mountain Research and Development, 1, 301–309.

    Article  Google Scholar 

  38. Shroder, J. F. (1998). Slope failure and denudation in the western Himalaya. Geomorphology, 26(1–3), 81–105.

    Article  Google Scholar 

  39. State council for Science and Technology, Department of Science and Technology, Government of Uttarakhand. Available online: http://www.ucost.in/ (Accessed on 2nd April, 2018).

  40. Survey of India, Department of Science and Technology, Government of India. Available online: http://www.surveyofindia.gov.in/ (Accessed on 2nd April, 2018).

  41. Xu, C., Xu, X., Lee, Y. H., Tan, X., Yu, G., & Dai, F. (2012). The 2010 Yushu earthquake triggered landslide hazard mapping using GIS and weight of evidence modelling. Environmental Earth Sciences, 66(6), 1603–1616.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ajanta Goswami.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Nath, R.R., Sharma, M.L., Goswami, A. et al. Landslide Susceptibility Zonation With Special Emphasis on Tectonic Features for Occurrence of Landslides in Lower Indian Himalaya. J Indian Soc Remote Sens (2021). https://doi.org/10.1007/s12524-020-01285-3

Download citation

Keywords

  • Landslide susceptibility zonation
  • Lower Himalaya
  • Fuzzy cosine amplitude
  • Fault Euclidian distance
  • Main boundary thrust
  • Main frontal thrust
  • Landslide relative frequency