Skip to main content
Log in

Pol-InSAR for Forest Biomass Estimation with the Transformation of the Polarization Basis

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

An improved method that uses polarimetric and Pol-InSAR information at the L-band and P-band was proposed in this study for estimating forest biomass. In the first phase, various polarimetric and polarimetric interferometry indicators were extracted via transformation of the polarization basis. In the second phase, the particle swarm optimization method is applied to identify optimal parameter values for biomass estimation. According to the results, the correlations between the polarimetric indicators and the biomass were stronger at the P-band compared to the L-band. Polarimetric indicators that involve HV and HH–VV show the maximum correlation with biomass prior to optimization. It is demonstrated that changing the polarization basis can significantly improve the correlations of estimators with the biomass, especially at the P-band. The globally optimal estimators involve the same scattering mechanisms (volume and double-bounce scattering), and the optimal polarization bases differ slightly among most of the cases, due to the adaptation to the forest natural geometry and/or the acquisition configuration. Regarding Pol-InSAR, several tree height retrieval estimators that are based on various assumptions have been analyzed under multiple polarization basis rotations. According to the results, the RVoG phase method, which represents the forest as a low-extinction structured volume, yielded the best accuracy, with R = 0.73 and RMSE = 4.30 m. The identification of the optimum polarization indicators via binary PSO could improve the biomass estimation accuracy by 2% and 6% at the P-band and L-band, respectively. It is demonstrated that such an approach can be employed to accurately estimate biomass via extrapolation of in situ measurements over an entire region.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Anderson, G. L., & Hanson, J. (1992). Evaluating hand-held radiometer derived vegetation indices for estimating above ground biomass. Geocarto International, 7(1), 71–78.

    Article  Google Scholar 

  • Ballester-Berman, J. D., Vicente-Guijalba, F., & Lopez-Sanchez, J. M. (2015). A simple RVoG test for PolInSAR data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 8(3), 1028–1040.

    Article  Google Scholar 

  • Bansal, J. C., Singh, P., Saraswat, M., Verma, A., Jadon, S. S., & Abraham, A. (2011). Inertia weight strategies in particle swarm optimization. Paper presented at the Nature and Biologically Inspired Computing (NaBIC), 2011 Third World Congress on.

  • Castel, T., Guerra, F., Caraglio, Y., & Houllier, F. (2002). Retrieval biomass of a large Venezuelan pine plantation using JERS-1 SAR data. Analysis of forest structure impact on radar signature. Remote Sensing of Environment, 79(1), 30–41.

    Article  Google Scholar 

  • Cloude, S. R. (2006). Polarization coherence tomography. Radio Science, 41(4), RS4017.

    Article  Google Scholar 

  • Cloude, S. R., & Papathanassiou, K. P. (1998). Polarimetric SAR interferometry. IEEE Transactions on Geoscience and Remote Sensing, 36(5), 1551–1565.

    Article  Google Scholar 

  • Crow, T. R. (1983). Comparing biomass regressions by site and stand age for red maple. Canadian Journal of Forest Research, 13(2), 283–288.

    Article  Google Scholar 

  • De Grandi, G., Lee, J.-S., Schuler, D., & Nezry, E. (2003). Texture and speckle statistics in polarimetric SAR synthesized images. IEEE Transactions on Geoscience and Remote Sensing, 41(9), 2070–2088.

    Article  Google Scholar 

  • Dobson, M. C., Ulaby, F. T., LeToan, T., Beaudoin, A., Kasischke, E. S., & Christensen, N. (1992). Dependence of radar backscatter on coniferous forest biomass. IEEE Transactions on Geoscience and Remote Sensing, 30(2), 412–415.

    Article  Google Scholar 

  • Garestier, F., Dubois-Fernandez, P., Champion, I., & Le Toan, T. (2011). Pine forest investigation using high resolution P-band Pol-InSAR data. Remote Sensing of Environment, 115(11), 2897–2905.

    Article  Google Scholar 

  • Garestier, F., Dubois-Fernandez, P. C., Guyon, D., & Le Toan, T. (2009). Forest biophysical parameter estimation using L-and P-band polarimetric SAR data. IEEE Transactions on Geoscience and Remote Sensing, 47(10), 3379–3388.

    Article  Google Scholar 

  • Garestier, F., & Le Toan, T. (2010). Estimation of a forest backscatter profile at P-band using Single Baseline (Pol-) InSAR. IEEE Transactions on Geoscience and Remote Sensing, 48(9), 3340–3348.

    Article  Google Scholar 

  • Hyyppä, J., Hyyppä, H., Inkinen, M., Engdahl, M., Linko, S., & Zhu, Y.-H. (2000). Accuracy comparison of various remote sensing data sources in the retrieval of forest stand attributes. Forest Ecology and Management, 128(1), 109–120.

    Article  Google Scholar 

  • Kennedy, J., & Eberhart, R. C. (1997). A discrete binary version of the particle swarm algorithm. Paper presented at the Systems, Man, and Cybernetics, 1997. 1997 IEEE International Conference on Computational Cybernetics and Simulation.

  • Kleinbaum, D. G., Kupper, L. L., Nizam, A., & Rosenberg, E. S. (2013). Applied regression analysis and other multivariable methods. Scarborough: Nelson Education.

    Google Scholar 

  • Klinge, H., Rodrigues, W., Brunig, E., & Fittkau, E. (1975). Biomass and structure in a central Amazonian rain forest. In F. B. Golley & E. Medina (Eds.), Tropical ecological system (pp. 115–122). Springer: Berlin.

    Chapter  Google Scholar 

  • Lee, J.-S., & Pottier, E. (2009). Polarimetric radar imaging: from basics to applications. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Lu, D. (2006). The potential and challenge of remote sensing-based biomass estimation. International Journal of Remote Sensing, 27(7), 1297–1328.

    Article  Google Scholar 

  • Minh, D. H. T., Le Toan, T., Rocca, F., Tebaldini, S., Villard, L., Réjou-Méchain, M., et al. (2016). SAR tomography for the retrieval of forest biomass and height: Cross-validation at two tropical forest sites in French Guiana. Remote Sensing of Environment, 175, 138–147.

    Article  Google Scholar 

  • Nelson, B. W., Mesquita, R., Pereira, J. L., De Souza, S. G. A., Batista, G. T., & Couto, L. B. (1999). Allometric regressions for improved estimate of secondary forest biomass in the central Amazon. Forest Ecology and Management, 117(1), 149–167.

    Article  Google Scholar 

  • Neumann, M., Saatchi, S. S., Ulander, L. M., & Fransson, J. E. (2012). Assessing performance of L-and P-band polarimetric interferometric SAR data in estimating boreal forest above-ground biomass. IEEE Transactions on Geoscience and Remote Sensing, 50(3), 714–726.

    Article  Google Scholar 

  • Ni-Meister, W., Lee, S., Strahler, A. H., Woodcock, C. E., Schaaf, C., Yao, T., et al. (2010). Assessing general relationships between aboveground biomass and vegetation structure parameters for improved carbon estimate from lidar remote sensing. Journal of Geophysical Research: Biogeosciences, 115(G2), G00E11.

    Article  Google Scholar 

  • Sandberg, G., Ulander, L. M., Fransson, J., Holmgren, J., & Le Toan, T. (2011). L-and P-band backscatter intensity for biomass retrieval in hemiboreal forest. Remote Sensing of Environment, 115(11), 2874–2886.

    Article  Google Scholar 

  • Tragl, K. (1990). Polarimetric radar backscattering from reciprocal random targets. IEEE Transactions on Geoscience and Remote Sensing, 28(5), 856–864.

    Article  Google Scholar 

  • Ulander, L., Gustavsson, A., Flood, B., Murdin, D., Dubois-Fernandez, P., Dupuis, X., et al. (2011). Biosar 2010 technical assistance for the development of airborne sar and geophysical measurements during the biosar 2010 experiment. Retrieved from

  • Wang, H., & Ouchi, K. (2008). Accuracy of the-distribution regression model for forest biomass estimation by high-resolution polarimetric SAR: Comparison of model estimation and field data. IEEE Transactions on Geoscience and Remote Sensing, 46(4), 1058–1064.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira Hosseini.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosseini, S., Ebadi, H., Maghsoudi, Y. et al. Pol-InSAR for Forest Biomass Estimation with the Transformation of the Polarization Basis. J Indian Soc Remote Sens 47, 1097–1109 (2019). https://doi.org/10.1007/s12524-019-00972-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-00972-0

Keywords

Navigation