Skip to main content
Log in

Determination of Opium Poppy (Papaver Somniferum) Parcels Using High-Resolution Satellite Imagery

  • Research Article
  • Published:
Journal of the Indian Society of Remote Sensing Aims and scope Submit manuscript

Abstract

Narcotic plants contain substances that cause unusual excitation and subsequent depression of the central nervous system. Many narcotic plants contain substances that have medicinal properties and are used primarily as pain relievers. Opium poppy (Papaver somniferum) is one of the most cultivated narcotic plants. The planning of Opium poppy growing is controlled by United Nations and Drugs and Medicines Control Program. This study was conducted to establish a basis for determining the traceability of poppy cultivating areas using remote sensing in the large plain. A very high-resolution QuickBird-2 satellite image was used in the study. The software of ERDAS Imagine and eCognition Developer was performed for image processing and classification. A variety of classification methods were performed on the satellite image. ArcGIS software was used for accuracy assessment, ground control, and map production of the poppy cultivating area. The accuracy of classification methods was compared. The producer–user accuracy was estimated as 97.99% using spectral difference sub-segmentation process of multiresolution segmentation algorithm in object-based classifications method. This algorithm can be a practical approach for determining of opium poppy parcels in the large plain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aguilar, M. A., Bianconi, F., Aguilar, F. J., & Fernández, I. (2014). Object-based greenhouse classification from GeoEye-1 and WorldView-2 stereo imagery. Remote Sensing, 6(5), 3554–3582.

    Article  Google Scholar 

  • Antunes, A. F. B., Lingnau, C., & Centeno, J. A. S. (2003). Object oriented analysis and semantic network for high resolution image classification. Boletim de Ciências Geodésicas, 9(2), 235–238.

    Google Scholar 

  • Asano, T., Chen, D. Z., Katoh, N., & Tokuyama, T. (1996, January). Polynomial-time solutions to image segmentation. In SODA (Vol. 96, pp. 104–113).

  • Asner, G. P. (1998). Biophysical and biochemical sources of variability in canopy reflectance. Remote Sensing of Environment, 64(3), 234–253.

    Article  Google Scholar 

  • Attarzadeh, R., & Momeni, M. (2018). Object-based rule sets and its transferability for building extraction from high resolution satellite imagery. Journal of the Indian Society of Remote Sensing, 46(2), 169–178.

    Article  Google Scholar 

  • Benz, U. C., Hofmann, P., Willhauck, G., Lingenfelder, I., & Heynen, M. (2004). Multi-resolution, object-oriented fuzzy analysis of remote sensing data for GIS-ready information. ISPRS Journal of photogrammetry and remote sensing, 58(3–4), 239–258.

    Article  Google Scholar 

  • Blaschke, T. (2010). Object based image analysis for remote sensing. ISPRS Journal of Photogrammetry and Remote Sensing, 65(1), 2–16.

    Article  Google Scholar 

  • Campos, N., Lawrence, R., McGlynn, B., & Gardner, K. (2010). Effects of LiDAR-Quickbird fusion on object-oriented classification of mountain resort development. Journal of Applied Remote Sensing, 4(1), 043556.

    Article  Google Scholar 

  • Chen, Y., Shi, P., Fung, T., Wang, J., & Li, X. (2007). Object-oriented classification for urban land cover mapping with ASTER imagery. International Journal of Remote Sensing, 28(20), 4645–4651.

    Article  Google Scholar 

  • Chuinsiri, S., Blasco, F., Bellan, M. F., & Kergoat, L. (1997). A poppy survey using high resolution remote sensing data. International Journal of Remote Sensing, 18(2), 393–407.

    Article  Google Scholar 

  • CNNCC. (2008). Poppy crop monitoring using remote sensing in North Myanmar (interior material). Chinese National Narcotics Control Commission, Beijing.

  • Congalton, R. G., & Green, K. (2008). Assessing the accuracy of remotely sensed data: Principles and practices. Boca Raton: CRC Press.

    Book  Google Scholar 

  • Costa, H., Foody, G. M., & Boyd, D. S. (2018). Supervised methods of image segmentation accuracy assessment in land cover mapping. Remote Sensing of Environment, 205, 338–351.

    Article  Google Scholar 

  • Curran, P. J. (1989). Remote sensing of foliar chemistry. Remote Sensing of Environment, 30(3), 271–278.

    Article  Google Scholar 

  • Foody, G. M. (2002). Status of land cover classification accuracy assessment. Remote Sensing of Environment, 80(1), 185–201.

    Article  Google Scholar 

  • Foody, G. M. (2009). Sample size determination for image classification accuracy assessment and comparison. International Journal of Remote Sensing, 30(20), 5273–5291.

    Article  Google Scholar 

  • Hay, G. J., & Castilla, G. (2008). Geographic Object-Based Image Analysis (GEOBIA): A new name for a new discipline. In Object-based image analysis (pp. 75–89). Springer: Berlin.

  • Jelsma, M. (2011). The development of international drug control: Lessons learned and strategic challenges of the future. International Drug Policy Consortium.

  • Jensen, J. R. (1986). Introductory digital image processing: a remote sensing perspective. Prentice-Hall, Englewood Cliffs, New Jersey, USA.

  • Jensen, J. R. (2005). Introductory digital image processing: A remote sensing perspective (3rd ed., p. 526). Upper Saddle River: Pearson Prentice Hall.

    Google Scholar 

  • Jia, K., Wu, B., Tian, Y., Li, Q., & Du, X. (2011). Spectral discrimination of opium poppy using field spectrometry. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3414.

    Article  Google Scholar 

  • Kanade, R., & John, R. (2018). Topographical influence on recent deforestation and degradation in the Sikkim Himalaya in India; Implications for conservation of East Himalayan broadleaf forest. Applied Geography, 92, 85–93.

    Article  Google Scholar 

  • Li, D., Ke, Y., Gong, H., & Li, X. (2015). Object-based urban tree species classification using bi-temporal WorldView-2 and WorldView-3 images. Remote Sensing, 7(12), 16917–16937.

    Article  Google Scholar 

  • Lillesand, T. M., & Kiefer, R. W. (1987). Remote sensing and image interpretation (2nd ed.). Wiley: Toronto.

    Google Scholar 

  • Lillesand, T. M., Kiefer, R. W., & Chipman, J. W. (2008). Digital image interpretation and analysis. Remote Sensing and Image Interpretation, 6, 545–581.

    Google Scholar 

  • Lillesand, T. M., et al. (2014). Remote sensing and image interpretation. New York: Wiley.

    Google Scholar 

  • Mather, P. M., & Koch, M. (2011). Computer processing of remotely-sensed images: An introduction. New York: Wiley.

    Book  Google Scholar 

  • MGM. (2017). Annual Precipitation and longest average climate Data of Turkey. Ankara: Turkish State Meteorological Service (MGM).

    Google Scholar 

  • Myint, S. W., Gober, P., Brazel, A., Grossman-Clarke, S., & Weng, Q. (2011). Per-pixel vs. object-based classification of urban land cover extraction using high spatial resolution imagery. Remote Sensing of Environment, 115(5), 1145–1161.

    Article  Google Scholar 

  • Nakazawa, A., Kim, J. H., Mitani, T., Odagawa, S., Takeda, T., Kobayashi, C., & Kashimura, O. (2012). A study on detecting the poppy field using hyperspectral remote sensing techniques. In IEEE International Geoscience and remote sensing symposium (IGARSS) (pp. 4829–4832). IEEE.

  • Rao, D. A., & Guha, A. (2018). Potential utility of spectral angle mapper and spectral information divergence methods for mapping lower vindhyan rocks and their accuracy assessment with respect to conventional lithological map in Jharkhand, India. Journal of the Indian Society of Remote Sensing, 46(5), 737–747.

    Article  Google Scholar 

  • Richards, J. A. (1999). Remote sensing digital image analysis (Vol. 3). Berlin: Springer.

    Book  Google Scholar 

  • Richards, J. A., & Jia, X. (1986a). Remote sensing digital analysis. Berlin: Spring.

    Book  Google Scholar 

  • Richards, J. A., & Jia, X. (1986b). Remote sensing digital analysis. Berlin: Spring.

    Book  Google Scholar 

  • Simms, D. M., Waine, T. W., Taylor, J. C., & Brewer, T. R. (2016). Image segmentation for improved consistency in image-interpretation of opium poppy. International Journal of Remote Sensing, 37(6), 1243–1256.

    Article  Google Scholar 

  • Smits, P. C., Dellepiane, S. G., & Schowengerdt, R. A. (1999). Quality assessment of image classification algorithms for land-cover mapping: a review and a proposal for a cost-based approach. International Journal of Remote Sensing, 20(8), 1461–1486.

    Article  Google Scholar 

  • Stehman, S. V. (1997). Estimating standard errors of accuracy assessment statistics under cluster sampling. Remote Sensing of Environment, 60(3), 258–269.

    Article  Google Scholar 

  • Taylor, J. C., Waine, T. W., Juniper, G. R., Simms, D. M., & Brewer, T. R. (2010). Survey and monitoring of opium poppy and wheat in Afghanistan: 2003–2009. Remote Sensing Letters, 1(3), 179–185.

    Article  Google Scholar 

  • Tian, Y., Wu, B., Zhang, L., Li, Q., Jia, K., & Wen, M. (2011). Opium poppy monitoring with remote sensing in North Myanmar. International Journal of Drug Policy, 22(4), 278–284.

    Article  Google Scholar 

  • Trimble (2014).” eCognition Developer 9.0 User Guide.” Trimble Germany GmbH: Munich, Germany.

  • Tucker, C. J., Newcomb, W. W., & Dregne, H. E. (1994). AVHRR data sets for determination of desert spatial extent. International Journal of Remote Sensing, 15(17), 3547–3565.

    Article  Google Scholar 

  • UNODC. (2007). Afghanistan Opium Survey 2007. United National Office on Drugs and Crime.

  • UNODC. (2008). Monitoreo de cultivos de coca, United Nations Office for Drug and Crime, (pp. 107–110). Bogotá: Colombia.

  • UNODC. (2009). World Drugs Report 2009. United National Office on Drugs and Crime.

  • UNODC. (2012). Afghanistan Opium Survey 2012. United Nations Office on Drugs and Crime.

  • UNODC. (2015). Guidelines for illicit opium and cannabis monitoring in Afghanistan. United Nations Office on Drugs and Crime, Unpublished technical report, contract no. 14.519.

  • Wan, L., Tang, K., Li, M., Zhong, Y., & Qin, A. K. (2015). Collaborative active and semisupervised learning for hyperspectral remote sensing image classification. IEEE Transactions on Geoscience and Remote Sensing, 53(5), 2384–2396.

    Article  Google Scholar 

  • Wang, J. J., Zhang, Y., & Bussink, C. (2014). Unsupervised multiple endmember spectral mixture analysis-based detection of opium poppy fields from an EO-1 Hyperion image in Helmand, Afghanistan. Science of the Total Environment, 476, 1–6.

    Google Scholar 

  • Wong, T. H., Mansor, S. B., Mispan, M. R., Ahmad, N., & Sulaiman, W. N. A. (2003). Feature extraction based on object oriented analysis. In Proceedings of ATC 2003 Conference (Vol. 2021).

  • Yang, C., Goolsby, J. A., & Everitt, J. H. (2009). Mapping giant reed with QuickBird imagery in the Mexican portion of the Rio Grande Basin. Journal of Applied Remote Sensing, 3(1), 033530.

    Article  Google Scholar 

  • Yu, Q., Gong, P., Clinton, N., Biging, G., Kelly, M., & Schirokauer, D. (2006). Object-based detailed vegetation classification with airborne high spatial resolution remote sensing imagery. Photogrammetric Engineering & Remote Sensing, 72(7), 799–811.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Scientific Research Projects Council of Suleyman Demirel University (Grant Number 4103-YL2-14).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sinan Demir.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Demir, S., Başayiğit, L. Determination of Opium Poppy (Papaver Somniferum) Parcels Using High-Resolution Satellite Imagery. J Indian Soc Remote Sens 47, 977–987 (2019). https://doi.org/10.1007/s12524-019-00955-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12524-019-00955-1

Keywords

Navigation